|  | --- | 
					
						
						|  | pipeline_tag: sentence-similarity | 
					
						
						|  | tags: | 
					
						
						|  | - sentence-transformers | 
					
						
						|  | - feature-extraction | 
					
						
						|  | - sentence-similarity | 
					
						
						|  | - transformers | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # new5558/simcse-model-wangchanberta-base-att-spm-uncased | 
					
						
						|  |  | 
					
						
						|  | This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. | 
					
						
						|  |  | 
					
						
						|  | <!--- Describe your model here --> | 
					
						
						|  |  | 
					
						
						|  | ## Usage (Sentence-Transformers) | 
					
						
						|  |  | 
					
						
						|  | Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | pip install -U sentence-transformers | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Then you can use the model like this: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from sentence_transformers import SentenceTransformer | 
					
						
						|  | sentences = ["This is an example sentence", "Each sentence is converted"] | 
					
						
						|  |  | 
					
						
						|  | model = SentenceTransformer('new5558/simcse-model-wangchanberta-base-att-spm-uncased') | 
					
						
						|  | embeddings = model.encode(sentences) | 
					
						
						|  | print(embeddings) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Usage (HuggingFace Transformers) | 
					
						
						|  | Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import AutoTokenizer, AutoModel | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def cls_pooling(model_output, attention_mask): | 
					
						
						|  | return model_output[0][:,0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # Sentences we want sentence embeddings for | 
					
						
						|  | sentences = ['This is an example sentence', 'Each sentence is converted'] | 
					
						
						|  |  | 
					
						
						|  | # Load model from HuggingFace Hub | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained('new5558/simcse-model-wangchanberta-base-att-spm-uncased') | 
					
						
						|  | model = AutoModel.from_pretrained('new5558/simcse-model-wangchanberta-base-att-spm-uncased') | 
					
						
						|  |  | 
					
						
						|  | # Tokenize sentences | 
					
						
						|  | encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | 
					
						
						|  |  | 
					
						
						|  | # Compute token embeddings | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | model_output = model(**encoded_input) | 
					
						
						|  |  | 
					
						
						|  | # Perform pooling. In this case, cls pooling. | 
					
						
						|  | sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) | 
					
						
						|  |  | 
					
						
						|  | print("Sentence embeddings:") | 
					
						
						|  | print(sentence_embeddings) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Evaluation Results | 
					
						
						|  |  | 
					
						
						|  | <!--- Describe how your model was evaluated --> | 
					
						
						|  |  | 
					
						
						|  | For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=new5558/simcse-model-wangchanberta-base-att-spm-uncased) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Training | 
					
						
						|  | The model was trained with the parameters: | 
					
						
						|  |  | 
					
						
						|  | **DataLoader**: | 
					
						
						|  |  | 
					
						
						|  | `torch.utils.data.dataloader.DataLoader` of length 5125 with parameters: | 
					
						
						|  | ``` | 
					
						
						|  | {'batch_size': 256, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | **Loss**: | 
					
						
						|  |  | 
					
						
						|  | `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: | 
					
						
						|  | ``` | 
					
						
						|  | {'scale': 20.0, 'similarity_fct': 'cos_sim'} | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Parameters of the fit()-Method: | 
					
						
						|  | ``` | 
					
						
						|  | { | 
					
						
						|  | "epochs": 1, | 
					
						
						|  | "evaluation_steps": 0, | 
					
						
						|  | "evaluator": "NoneType", | 
					
						
						|  | "max_grad_norm": 1, | 
					
						
						|  | "optimizer_class": "<class 'transformers.optimization.AdamW'>", | 
					
						
						|  | "optimizer_params": { | 
					
						
						|  | "lr": 1e-05 | 
					
						
						|  | }, | 
					
						
						|  | "scheduler": "WarmupLinear", | 
					
						
						|  | "steps_per_epoch": null, | 
					
						
						|  | "warmup_steps": 10000, | 
					
						
						|  | "weight_decay": 0.01 | 
					
						
						|  | } | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Full Model Architecture | 
					
						
						|  | ``` | 
					
						
						|  | SentenceTransformer( | 
					
						
						|  | (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: CamembertModel | 
					
						
						|  | (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) | 
					
						
						|  | ) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Citing & Authors | 
					
						
						|  |  | 
					
						
						|  | <!--- Describe where people can find more information --> |