nhankins's picture
nhankins/es_euph_distil_2.0
0a9928a verified
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: distilbert-base-multilingual-cased-lora-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-multilingual-cased-lora-text-classification
This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5734
- Precision: 0.7362
- Recall: 0.8026
- F1 and accuracy: {'accuracy': 0.6970509383378016, 'f1': 0.7679671457905544}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 and accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:----------------------------------------------------------:|
| No log | 1.0 | 372 | 0.6573 | 0.6247 | 1.0 | {'accuracy': 0.6246648793565683, 'f1': 0.768976897689769} |
| 0.6699 | 2.0 | 744 | 0.6452 | 0.6247 | 1.0 | {'accuracy': 0.6246648793565683, 'f1': 0.768976897689769} |
| 0.6412 | 3.0 | 1116 | 0.6130 | 0.6602 | 0.8755 | {'accuracy': 0.6407506702412868, 'f1': 0.7527675276752768} |
| 0.6412 | 4.0 | 1488 | 0.5949 | 0.7413 | 0.8240 | {'accuracy': 0.710455764075067, 'f1': 0.7804878048780487} |
| 0.6158 | 5.0 | 1860 | 0.5860 | 0.7323 | 0.8455 | {'accuracy': 0.710455764075067, 'f1': 0.7848605577689244} |
| 0.5891 | 6.0 | 2232 | 0.5802 | 0.7381 | 0.7983 | {'accuracy': 0.6970509383378016, 'f1': 0.7670103092783506} |
| 0.5855 | 7.0 | 2604 | 0.5770 | 0.7354 | 0.8112 | {'accuracy': 0.6997319034852547, 'f1': 0.7714285714285714} |
| 0.5855 | 8.0 | 2976 | 0.5757 | 0.7328 | 0.8240 | {'accuracy': 0.7024128686327078, 'f1': 0.7757575757575758} |
| 0.5839 | 9.0 | 3348 | 0.5741 | 0.7362 | 0.8026 | {'accuracy': 0.6970509383378016, 'f1': 0.7679671457905544} |
| 0.5759 | 10.0 | 3720 | 0.5734 | 0.7362 | 0.8026 | {'accuracy': 0.6970509383378016, 'f1': 0.7679671457905544} |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1