SentenceTransformer based on KBLab/bert-base-swedish-cased

This is a sentence-transformers model finetuned from KBLab/bert-base-swedish-cased on the parquet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: KBLab/bert-base-swedish-cased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • parquet

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("nicher92/embedding_model_one_epoch")
# Run inference
sentences = [
    'Mannen satt ensam i gruset en hel natt, men ingen brydde sig. Det Tove gjorde då värmer mitt hjärta. Vi behöver fler som dig!',
    '<script data-adfscript="adx.adform.net/adx/?mid=168702&rnd=12341523"></script> <script src="//s1.adform.net/banners/scripts/adx.js" async defer></script> Ingen ville hjälpa den 75-årige mannen som suttit ute i gruset – hela natten. Tills 23-årige Tova Eldstål kom förbi. – Jag tycker vi ska börja ta hand om varandra mer, säger hon till Aftonbladet. Nu hyllar tusentals hennes Facebook-inlägg om händelsen. Det var i fredags morse som Tova Eldstål såg den äldre mannen sitta i gruset intill tågstationen i Fagersta. Ingen av de tio personer som gick framför Tova stannade till. Men det gjorde Tova.Hon fick veta att mannen hade ont i bröstet och att han suttit där sedan 17-tiden kvällen innan. Nu har Tova skrivit ett inlägg på Facebook om händelsen. Över 80 000 har gillat texten och tusentals hyllar henne för insatsen."Jag har missat mitt tåg men jag lämnade',
    "Vi har fortsatt noen ledige plasser til kveldens store smaking. Bli med og smak 11 toppviner, deriblant flere årganger av Premier og Grand Cru-chabliser samtidig som du lærer mer om vinområdet. Med sin friske, klare duft av mineraler og nyåpnede østers, har de knusktørre vinene fra Chablis fått stjernestatus i vinverdenen. Smak Chablis på sitt aller beste og lær mer om hva som gjør dette vinområdet så spesielt ved å bli med på denne eksklusive smakingen. Revolusjonerende Grand Cru Denne kvelden får vi besøk fra et av Chablis' mest berømte vinhus, William Fèvre. Takket være fremsynthet på 1960-tallet har huset har den største andelen av Grand Cru-vinmarker blant alle vinhusene i området. Hele 16 av de totalt 100 hektarene med de aller beste vinmarkene i Chablis tilhører eiendommen.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

parquet

  • Dataset: parquet
  • Size: 52,896,778 training samples
  • Columns: header and body
  • Approximate statistics based on the first 1000 samples:
    header body
    type string string
    details
    • min: 4 tokens
    • mean: 12.12 tokens
    • max: 178 tokens
    • min: 13 tokens
    • mean: 154.53 tokens
    • max: 362 tokens
  • Samples:
    header body
    Miljø: 4 Ford Focus stv. med 115-hesters diesel har et oppgitt EU-forbruk på 0,42 l/mil og et oppgitt CO2-utslipp på 109 g/km. Begge deler er gode tall for bilstørrelsen. I praksis, ute på veien i vår 20 mil lange testløype, trenger Focus stv. 0,52 l/mil. Fortsatt er det et godkjent tall, men Focusen havner noen dieseldråper bak for eksempel den forbruksoptimerte Skoda Octavia GreenLine.
    Invitation til klassefest 2013 17 okt Der kom brev med posten. (frit oversat til html af Leif) Kære gamle klassekammerater:Så er det endnu engang tid til klassekomsammen. Som aftalt sidste år er det **lørdag den 26. oktober:**Vi mødes kl. 13,00 foran indgangen til Århus Domkirke, Store Torv 1, 8000 Århus C.Herfra går vi til Besættelsesmuseet i Århus 1940-45 i Mathilde Fibrigers Have 2, hvor vi kan gå rundt og se på hvad der skete under besættelsen i Århus By.Når vi er færdige tager vi ud til mig, hvor vi vil få en god middag. Efterfølgende kaffe og senere natmad. Håber vi må få en rigtig hyggelig dag sammen. Du skal give besked, om du kommer senest den 16.10på telefon:eller Mobil:Beløb og opkrævning på dagen: ca. 300,- kr. Hilsen festudvalget: Hanne Gerner Thomsen
    Konklusjon: 6 Hovedkarakteren er ikke et gjennomsnitt av delkarakterene, men et uttrykk for hvordan bilen totalt sett er i forhold til konkurrentene på det tidspunktet da testen ble gjennomført. Som nevnt allerede i innledningen: Vi mener Ford Focus 1,6 TDCI stv. totalt sett er den beste kompakte stasjonsvogna på markedet per i dag (juni 2011), og slik sett forsvarer den en sekser på terningen. Blant de sterkeste sidene er opplevelsen av at Focus gir mye god bil for pengene både når det gjelder kjøreegenskaper, plass og ytelser. Litt rom for forbedring finner vi først og fremst når det gjelder motoren. 1,5-litersdieselen er ikke lenger klassens mest kultiverte.
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "mini_batch_size": 128
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 2048
  • learning_rate: 0.0002
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0002
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0.0012 5 6.7754
0.0023 10 6.6896
0.0035 15 6.5047
0.0046 20 6.2826
0.0058 25 5.9985
0.0070 30 5.6479
0.0081 35 5.2283
0.0093 40 4.9118
0.0105 45 4.5856
0.0116 50 4.2933
0.0128 55 4.039
0.0139 60 3.8274
0.0151 65 3.6651
0.0163 70 3.5111
0.0174 75 3.3547
0.0186 80 3.2696
0.0197 85 3.1727
0.0209 90 3.0879
0.0221 95 3.0103
0.0232 100 2.9765
0.0244 105 2.8899
0.0256 110 2.8561
0.0267 115 2.8292
0.0279 120 2.7635
0.0290 125 2.7508
0.0302 130 2.705
0.0314 135 2.6831
0.0325 140 2.6545
0.0337 145 2.6175
0.0349 150 2.595
0.0360 155 2.5818
0.0372 160 2.537
0.0383 165 2.538
0.0395 170 2.5051
0.0407 175 2.502
0.0418 180 2.4705
0.0430 185 2.4809
0.0441 190 2.4443
0.0453 195 2.409
0.0465 200 2.3929
0.0476 205 2.3917
0.0488 210 2.3654
0.0500 215 2.3603
0.0511 220 2.3482
0.0523 225 2.3189
0.0534 230 2.3009
0.0546 235 2.3032
0.0558 240 2.2824
0.0569 245 2.2792
0.0581 250 2.2642
0.0592 255 2.2435
0.0604 260 2.2361
0.0616 265 2.2115
0.0627 270 2.2203
0.0639 275 2.1931
0.0651 280 2.2
0.0662 285 2.1862
0.0674 290 2.1615
0.0685 295 2.1783
0.0697 300 2.1515
0.0709 305 2.1318
0.0720 310 2.1403
0.0732 315 2.1252
0.0743 320 2.1199
0.0755 325 2.1036
0.0767 330 2.1033
0.0778 335 2.0887
0.0790 340 2.0715
0.0802 345 2.0709
0.0813 350 2.0488
0.0825 355 2.0484
0.0836 360 2.0373
0.0848 365 2.051
0.0860 370 2.0395
0.0871 375 2.0248
0.0883 380 2.0148
0.0895 385 2.0126
0.0906 390 1.9956
0.0918 395 1.987
0.0929 400 1.9875
0.0941 405 1.9698
0.0953 410 1.9596
0.0964 415 1.968
0.0976 420 1.9438
0.0987 425 1.9411
0.0999 430 1.9624
0.1011 435 1.938
0.1022 440 1.9295
0.1034 445 1.922
0.1046 450 1.9306
0.1057 455 1.921
0.1069 460 1.915
0.1080 465 1.883
0.1092 470 1.8886
0.1104 475 1.8886
0.1115 480 1.9004
0.1127 485 1.878
0.1138 490 1.8567
0.1150 495 1.8659
0.1162 500 1.8522
0.1173 505 1.8482
0.1185 510 1.8356
0.1197 515 1.8566
0.1208 520 1.8392
0.1220 525 1.8407
0.1231 530 1.8201
0.1243 535 1.8152
0.1255 540 1.8012
0.1266 545 1.819
0.1278 550 1.8131
0.1289 555 1.8167
0.1301 560 1.8123
0.1313 565 1.8035
0.1324 570 1.7781
0.1336 575 1.7684
0.1348 580 1.7633
0.1359 585 1.7765
0.1371 590 1.767
0.1382 595 1.7633
0.1394 600 1.7555
0.1406 605 1.7437
0.1417 610 1.7348
0.1429 615 1.7329
0.1441 620 1.7394
0.1452 625 1.7367
0.1464 630 1.737
0.1475 635 1.7063
0.1487 640 1.727
0.1499 645 1.732
0.1510 650 1.7172
0.1522 655 1.7164
0.1533 660 1.7175
0.1545 665 1.7119
0.1557 670 1.6951
0.1568 675 1.7021
0.1580 680 1.6708
0.1592 685 1.6839
0.1603 690 1.6834
0.1615 695 1.6743
0.1626 700 1.6755
0.1638 705 1.6798
0.1650 710 1.6671
0.1661 715 1.6563
0.1673 720 1.6555
0.1684 725 1.6413
0.1696 730 1.6471
0.1708 735 1.6532
0.1719 740 1.6481
0.1731 745 1.6429
0.1743 750 1.6488
0.1754 755 1.6475
0.1766 760 1.6213
0.1777 765 1.6367
0.1789 770 1.6319
0.1801 775 1.6204
0.1812 780 1.6377
0.1824 785 1.6203
0.1836 790 1.6117
0.1847 795 1.59
0.1859 800 1.6249
0.1870 805 1.5927
0.1882 810 1.6007
0.1894 815 1.5908
0.1905 820 1.6081
0.1917 825 1.5973
0.1928 830 1.6012
0.1940 835 1.5899
0.1952 840 1.589
0.1963 845 1.5766
0.1975 850 1.5613
0.1987 855 1.58
0.1998 860 1.5811
0.2010 865 1.5763
0.2021 870 1.5605
0.2033 875 1.5807
0.2045 880 1.5681
0.2056 885 1.5681
0.2068 890 1.551
0.2079 895 1.5418
0.2091 900 1.5523
0.2103 905 1.5508
0.2114 910 1.5463
0.2126 915 1.5356
0.2138 920 1.5573
0.2149 925 1.5439
0.2161 930 1.5383
0.2172 935 1.5248
0.2184 940 1.5263
0.2196 945 1.5249
0.2207 950 1.516
0.2219 955 1.5114
0.2230 960 1.5167
0.2242 965 1.5302
0.2254 970 1.5164
0.2265 975 1.5295
0.2277 980 1.5098
0.2289 985 1.5297
0.2300 990 1.5146
0.2312 995 1.5094
0.2323 1000 1.5022
0.2335 1005 1.5026
0.2347 1010 1.4903
0.2358 1015 1.4934
0.2370 1020 1.5048
0.2382 1025 1.4882
0.2393 1030 1.4692
0.2405 1035 1.4894
0.2416 1040 1.4774
0.2428 1045 1.4928
0.2440 1050 1.4861
0.2451 1055 1.4829
0.2463 1060 1.4738
0.2474 1065 1.4902
0.2486 1070 1.4784
0.2498 1075 1.4804
0.2509 1080 1.4692
0.2521 1085 1.4625
0.2533 1090 1.4511
0.2544 1095 1.4735
0.2556 1100 1.4547
0.2567 1105 1.4488
0.2579 1110 1.4585
0.2591 1115 1.455
0.2602 1120 1.4571
0.2614 1125 1.4617
0.2625 1130 1.4572
0.2637 1135 1.4501
0.2649 1140 1.4599
0.2660 1145 1.4469
0.2672 1150 1.4308
0.2684 1155 1.4329
0.2695 1160 1.441
0.2707 1165 1.431
0.2718 1170 1.4323
0.2730 1175 1.4194
0.2742 1180 1.4364
0.2753 1185 1.4364
0.2765 1190 1.4228
0.2776 1195 1.418
0.2788 1200 1.4246
0.2800 1205 1.4387
0.2811 1210 1.4188
0.2823 1215 1.4035
0.2835 1220 1.4233
0.2846 1225 1.4112
0.2858 1230 1.4284
0.2869 1235 1.4154
0.2881 1240 1.4167
0.2893 1245 1.4049
0.2904 1250 1.4064
0.2916 1255 1.4057
0.2928 1260 1.4204
0.2939 1265 1.4093
0.2951 1270 1.4053
0.2962 1275 1.4018
0.2974 1280 1.398
0.2986 1285 1.4039
0.2997 1290 1.3844
0.3009 1295 1.4017
0.3020 1300 1.3993
0.3032 1305 1.3962
0.3044 1310 1.3784
0.3055 1315 1.395
0.3067 1320 1.3998
0.3079 1325 1.3904
0.3090 1330 1.3858
0.3102 1335 1.378
0.3113 1340 1.3812
0.3125 1345 1.3912
0.3137 1350 1.3775
0.3148 1355 1.3628
0.3160 1360 1.3757
0.3171 1365 1.3852
0.3183 1370 1.377
0.3195 1375 1.3985
0.3206 1380 1.3703
0.3218 1385 1.3564
0.3230 1390 1.3658
0.3241 1395 1.3662
0.3253 1400 1.3536
0.3264 1405 1.3542
0.3276 1410 1.355
0.3288 1415 1.3569
0.3299 1420 1.3565
0.3311 1425 1.3538
0.3322 1430 1.3447
0.3334 1435 1.3368
0.3346 1440 1.3581
0.3357 1445 1.3601
0.3369 1450 1.3367
0.3381 1455 1.3406
0.3392 1460 1.3393
0.3404 1465 1.3631
0.3415 1470 1.338
0.3427 1475 1.3441
0.3439 1480 1.3405
0.3450 1485 1.3532
0.3462 1490 1.3478
0.3474 1495 1.3383
0.3485 1500 1.3346
0.3497 1505 1.341
0.3508 1510 1.3254
0.3520 1515 1.3296
0.3532 1520 1.328
0.3543 1525 1.3395
0.3555 1530 1.3242
0.3566 1535 1.318
0.3578 1540 1.3167
0.3590 1545 1.3238
0.3601 1550 1.314
0.3613 1555 1.3258
0.3625 1560 1.3189
0.3636 1565 1.3058
0.3648 1570 1.321
0.3659 1575 1.3003
0.3671 1580 1.3165
0.3683 1585 1.3083
0.3694 1590 1.3165
0.3706 1595 1.3179
0.3717 1600 1.3132
0.3729 1605 1.3005
0.3741 1610 1.3062
0.3752 1615 1.3179
0.3764 1620 1.315
0.3776 1625 1.306
0.3787 1630 1.304
0.3799 1635 1.2906
0.3810 1640 1.3015
0.3822 1645 1.2997
0.3834 1650 1.2931
0.3845 1655 1.2915
0.3857 1660 1.3021
0.3868 1665 1.2969
0.3880 1670 1.2941
0.3892 1675 1.2938
0.3903 1680 1.2968
0.3915 1685 1.2821
0.3927 1690 1.2786
0.3938 1695 1.2856
0.3950 1700 1.2785
0.3961 1705 1.2752
0.3973 1710 1.2946
0.3985 1715 1.2817
0.3996 1720 1.2799
0.4008 1725 1.2727
0.4020 1730 1.2851
0.4031 1735 1.2552
0.4043 1740 1.2824
0.4054 1745 1.2601
0.4066 1750 1.2851
0.4078 1755 1.267
0.4089 1760 1.2694
0.4101 1765 1.2699
0.4112 1770 1.2604
0.4124 1775 1.2739
0.4136 1780 1.2842
0.4147 1785 1.2686
0.4159 1790 1.2642
0.4171 1795 1.2634
0.4182 1800 1.2516
0.4194 1805 1.2644
0.4205 1810 1.2635
0.4217 1815 1.2516
0.4229 1820 1.2582
0.4240 1825 1.2513
0.4252 1830 1.2468
0.4263 1835 1.2388
0.4275 1840 1.2494
0.4287 1845 1.2383
0.4298 1850 1.2567
0.4310 1855 1.2518
0.4322 1860 1.2571
0.4333 1865 1.2445
0.4345 1870 1.251
0.4356 1875 1.2446
0.4368 1880 1.2315
0.4380 1885 1.2382
0.4391 1890 1.256
0.4403 1895 1.2446
0.4414 1900 1.2286
0.4426 1905 1.2411
0.4438 1910 1.2392
0.4449 1915 1.233
0.4461 1920 1.2455
0.4473 1925 1.2309
0.4484 1930 1.2178
0.4496 1935 1.2253
0.4507 1940 1.2295
0.4519 1945 1.229
0.4531 1950 1.2456
0.4542 1955 1.2366
0.4554 1960 1.2273
0.4566 1965 1.2208
0.4577 1970 1.2291
0.4589 1975 1.2083
0.4600 1980 1.2342
0.4612 1985 1.2237
0.4624 1990 1.2265
0.4635 1995 1.2098
0.4647 2000 1.2258
0.4658 2005 1.2357
0.4670 2010 1.2194
0.4682 2015 1.2258
0.4693 2020 1.2014
0.4705 2025 1.2051
0.4717 2030 1.2035
0.4728 2035 1.2179
0.4740 2040 1.2241
0.4751 2045 1.2255
0.4763 2050 1.2265
0.4775 2055 1.2163
0.4786 2060 1.211
0.4798 2065 1.2178
0.4809 2070 1.2344
0.4821 2075 1.2089
0.4833 2080 1.2031
0.4844 2085 1.2128
0.4856 2090 1.2074
0.4868 2095 1.2071
0.4879 2100 1.2005
0.4891 2105 1.2133
0.4902 2110 1.1913
0.4914 2115 1.2054
0.4926 2120 1.2071
0.4937 2125 1.1938
0.4949 2130 1.1956
0.4961 2135 1.1932
0.4972 2140 1.2124
0.4984 2145 1.2098
0.4995 2150 1.216
0.5007 2155 1.2135
0.5019 2160 1.2
0.5030 2165 1.2118
0.5042 2170 1.1988
0.5053 2175 1.1973
0.5065 2180 1.2039
0.5077 2185 1.1959
0.5088 2190 1.1924
0.5100 2195 1.1875
0.5112 2200 1.1806
0.5123 2205 1.1933
0.5135 2210 1.1837
0.5146 2215 1.1876
0.5158 2220 1.1901
0.5170 2225 1.1971
0.5181 2230 1.2016
0.5193 2235 1.1849
0.5204 2240 1.1823
0.5216 2245 1.1757
0.5228 2250 1.1816
0.5239 2255 1.18
0.5251 2260 1.1879
0.5263 2265 1.1867
0.5274 2270 1.1734
0.5286 2275 1.1798
0.5297 2280 1.1848
0.5309 2285 1.1829
0.5321 2290 1.177
0.5332 2295 1.1795
0.5344 2300 1.1725
0.5355 2305 1.1747
0.5367 2310 1.1736
0.5379 2315 1.1777
0.5390 2320 1.1897
0.5402 2325 1.1792
0.5414 2330 1.1843
0.5425 2335 1.1762
0.5437 2340 1.1804
0.5448 2345 1.1728
0.5460 2350 1.1514
0.5472 2355 1.1747
0.5483 2360 1.1658
0.5495 2365 1.1763
0.5507 2370 1.1588
0.5518 2375 1.1641
0.5530 2380 1.1714
0.5541 2385 1.1697
0.5553 2390 1.1567
0.5565 2395 1.1696
0.5576 2400 1.1578
0.5588 2405 1.1683
0.5599 2410 1.1547
0.5611 2415 1.1642
0.5623 2420 1.1755
0.5634 2425 1.159
0.5646 2430 1.1602
0.5658 2435 1.1652
0.5669 2440 1.1478
0.5681 2445 1.1542
0.5692 2450 1.15
0.5704 2455 1.1665
0.5716 2460 1.1765
0.5727 2465 1.1598
0.5739 2470 1.1448
0.5750 2475 1.1431
0.5762 2480 1.1503
0.5774 2485 1.1433
0.5785 2490 1.1556
0.5797 2495 1.1692
0.5809 2500 1.1454
0.5820 2505 1.15
0.5832 2510 1.1528
0.5843 2515 1.1454
0.5855 2520 1.1656
0.5867 2525 1.1455
0.5878 2530 1.156
0.5890 2535 1.1489
0.5901 2540 1.1442
0.5913 2545 1.1466
0.5925 2550 1.1437
0.5936 2555 1.1579
0.5948 2560 1.1484
0.5960 2565 1.1399
0.5971 2570 1.1475
0.5983 2575 1.1486
0.5994 2580 1.1612
0.6006 2585 1.1435
0.6018 2590 1.1439
0.6029 2595 1.1427
0.6041 2600 1.1468
0.6053 2605 1.1391
0.6064 2610 1.1427
0.6076 2615 1.1428
0.6087 2620 1.1415
0.6099 2625 1.1345
0.6111 2630 1.1356
0.6122 2635 1.1274
0.6134 2640 1.1472
0.6145 2645 1.1364
0.6157 2650 1.1293
0.6169 2655 1.1333
0.6180 2660 1.1371
0.6192 2665 1.1486
0.6204 2670 1.1271
0.6215 2675 1.1371
0.6227 2680 1.1298
0.6238 2685 1.1414
0.625 2690 1.1365
0.6262 2695 1.1484
0.6273 2700 1.1248
0.6285 2705 1.1291
0.6296 2710 1.1267
0.6308 2715 1.121
0.6320 2720 1.1414
0.6331 2725 1.1362
0.6343 2730 1.1206
0.6355 2735 1.1337
0.6366 2740 1.1122
0.6378 2745 1.122
0.6389 2750 1.1245
0.6401 2755 1.1426
0.6413 2760 1.1233
0.6424 2765 1.1398
0.6436 2770 1.1214
0.6447 2775 1.1152
0.6459 2780 1.1348
0.6471 2785 1.1238
0.6482 2790 1.1175
0.6494 2795 1.1153
0.6506 2800 1.1153
0.6517 2805 1.1164
0.6529 2810 1.1155
0.6540 2815 1.108
0.6552 2820 1.1138
0.6564 2825 1.1121
0.6575 2830 1.1205
0.6587 2835 1.1252
0.6599 2840 1.1151
0.6610 2845 1.1209
0.6622 2850 1.1231
0.6633 2855 1.1212
0.6645 2860 1.1151
0.6657 2865 1.1143
0.6668 2870 1.1147
0.6680 2875 1.1208
0.6691 2880 1.1132
0.6703 2885 1.1
0.6715 2890 1.1087
0.6726 2895 1.1216
0.6738 2900 1.1112
0.6750 2905 1.1221
0.6761 2910 1.095
0.6773 2915 1.1068
0.6784 2920 1.1092
0.6796 2925 1.1145
0.6808 2930 1.1153
0.6819 2935 1.1082
0.6831 2940 1.1001
0.6842 2945 1.1154
0.6854 2950 1.1079
0.6866 2955 1.1051
0.6877 2960 1.1073
0.6889 2965 1.1024
0.6901 2970 1.1029
0.6912 2975 1.0998
0.6924 2980 1.1144
0.6935 2985 1.1092
0.6947 2990 1.1043
0.6959 2995 1.1095
0.6970 3000 1.0948
0.6982 3005 1.0866
0.6993 3010 1.1011
0.7005 3015 1.1002
0.7017 3020 1.0948
0.7028 3025 1.0962
0.7040 3030 1.0981
0.7052 3035 1.0909
0.7063 3040 1.0945
0.7075 3045 1.1108
0.7086 3050 1.1119
0.7098 3055 1.0856
0.7110 3060 1.1141
0.7121 3065 1.1079
0.7133 3070 1.099
0.7145 3075 1.0813
0.7156 3080 1.0849
0.7168 3085 1.0927
0.7179 3090 1.0949
0.7191 3095 1.0974
0.7203 3100 1.1004
0.7214 3105 1.0897
0.7226 3110 1.0958
0.7237 3115 1.0995
0.7249 3120 1.0982
0.7261 3125 1.0986
0.7272 3130 1.0971
0.7284 3135 1.0797
0.7296 3140 1.0915
0.7307 3145 1.1058
0.7319 3150 1.0822
0.7330 3155 1.0806
0.7342 3160 1.0762
0.7354 3165 1.0965
0.7365 3170 1.0853
0.7377 3175 1.0873
0.7388 3180 1.1015
0.7400 3185 1.0832
0.7412 3190 1.0919
0.7423 3195 1.0838
0.7435 3200 1.079
0.7447 3205 1.0802
0.7458 3210 1.0723
0.7470 3215 1.0861
0.7481 3220 1.078
0.7493 3225 1.0847
0.7505 3230 1.0907
0.7516 3235 1.0874
0.7528 3240 1.0883
0.7539 3245 1.0897
0.7551 3250 1.0842
0.7563 3255 1.0921
0.7574 3260 1.099
0.7586 3265 1.0753
0.7598 3270 1.0921
0.7609 3275 1.0847
0.7621 3280 1.0921
0.7632 3285 1.0809
0.7644 3290 1.088
0.7656 3295 1.0812
0.7667 3300 1.0788
0.7679 3305 1.0998
0.7691 3310 1.0788
0.7702 3315 1.0863
0.7714 3320 1.0827
0.7725 3325 1.0806
0.7737 3330 1.0776
0.7749 3335 1.0825
0.7760 3340 1.067
0.7772 3345 1.0735
0.7783 3350 1.0826
0.7795 3355 1.0692
0.7807 3360 1.0827
0.7818 3365 1.0868
0.7830 3370 1.0696
0.7842 3375 1.0739
0.7853 3380 1.0759
0.7865 3385 1.0706
0.7876 3390 1.0811
0.7888 3395 1.0672
0.7900 3400 1.0534
0.7911 3405 1.0635
0.7923 3410 1.0737
0.7934 3415 1.0707
0.7946 3420 1.0642
0.7958 3425 1.0744
0.7969 3430 1.0738
0.7981 3435 1.0675
0.7993 3440 1.0705
0.8004 3445 1.0682
0.8016 3450 1.0593
0.8027 3455 1.0702
0.8039 3460 1.0688
0.8051 3465 1.068
0.8062 3470 1.0678
0.8074 3475 1.0563
0.8086 3480 1.0759
0.8097 3485 1.074
0.8109 3490 1.0712
0.8120 3495 1.0707
0.8132 3500 1.0635
0.8144 3505 1.077
0.8155 3510 1.0633
0.8167 3515 1.0731
0.8178 3520 1.0726
0.8190 3525 1.0648
0.8202 3530 1.0655
0.8213 3535 1.0552
0.8225 3540 1.0488
0.8237 3545 1.0544
0.8248 3550 1.0677
0.8260 3555 1.066
0.8271 3560 1.0545
0.8283 3565 1.0621
0.8295 3570 1.0716
0.8306 3575 1.0577
0.8318 3580 1.0626
0.8329 3585 1.0589
0.8341 3590 1.0759
0.8353 3595 1.0544
0.8364 3600 1.0736
0.8376 3605 1.0604
0.8388 3610 1.0471
0.8399 3615 1.0627
0.8411 3620 1.0595
0.8422 3625 1.0529
0.8434 3630 1.0629
0.8446 3635 1.0614
0.8457 3640 1.0585
0.8469 3645 1.0584
0.8480 3650 1.0588
0.8492 3655 1.0555
0.8504 3660 1.0452
0.8515 3665 1.0603
0.8527 3670 1.0568
0.8539 3675 1.0623
0.8550 3680 1.0397
0.8562 3685 1.0747
0.8573 3690 1.0478
0.8585 3695 1.0514
0.8597 3700 1.0474
0.8608 3705 1.0469
0.8620 3710 1.0526
0.8632 3715 1.041
0.8643 3720 1.0483
0.8655 3725 1.0479
0.8666 3730 1.0536
0.8678 3735 1.0515
0.8690 3740 1.0547
0.8701 3745 1.0699
0.8713 3750 1.0525
0.8724 3755 1.0561
0.8736 3760 1.0459
0.8748 3765 1.0619
0.8759 3770 1.0325
0.8771 3775 1.041
0.8783 3780 1.0414
0.8794 3785 1.0516
0.8806 3790 1.0452
0.8817 3795 1.0402
0.8829 3800 1.0447
0.8841 3805 1.0482
0.8852 3810 1.0455
0.8864 3815 1.041
0.8875 3820 1.0485
0.8887 3825 1.0402
0.8899 3830 1.052
0.8910 3835 1.0348
0.8922 3840 1.0369
0.8934 3845 1.0535
0.8945 3850 1.0426
0.8957 3855 1.0474
0.8968 3860 1.0293
0.8980 3865 1.0368
0.8992 3870 1.038
0.9003 3875 1.0447
0.9015 3880 1.0476
0.9026 3885 1.0422
0.9038 3890 1.0314
0.9050 3895 1.0331
0.9061 3900 1.0434
0.9073 3905 1.0251
0.9085 3910 1.05
0.9096 3915 1.0289
0.9108 3920 1.0338
0.9119 3925 1.0319
0.9131 3930 1.0234
0.9143 3935 1.0376
0.9154 3940 1.0314
0.9166 3945 1.0401
0.9178 3950 1.0501
0.9189 3955 1.0392
0.9201 3960 1.0241
0.9212 3965 1.0286
0.9224 3970 1.0419
0.9236 3975 1.0311
0.9247 3980 1.0418
0.9259 3985 1.0299
0.9270 3990 1.0395
0.9282 3995 1.0287
0.9294 4000 1.0306

Framework Versions

  • Python: 3.12.9
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CachedMultipleNegativesRankingLoss

@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
Downloads last month
97
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for nicher92/embedding_model_one_epoch

Finetuned
(3)
this model