SentenceTransformer based on KBLab/bert-base-swedish-cased
This is a sentence-transformers model finetuned from KBLab/bert-base-swedish-cased on the parquet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: KBLab/bert-base-swedish-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- parquet
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("nicher92/embedding_model_one_epoch")
# Run inference
sentences = [
'Mannen satt ensam i gruset en hel natt, men ingen brydde sig. Det Tove gjorde då värmer mitt hjärta. Vi behöver fler som dig!',
'<script data-adfscript="adx.adform.net/adx/?mid=168702&rnd=12341523"></script> <script src="//s1.adform.net/banners/scripts/adx.js" async defer></script> Ingen ville hjälpa den 75-årige mannen som suttit ute i gruset – hela natten. Tills 23-årige Tova Eldstål kom förbi. – Jag tycker vi ska börja ta hand om varandra mer, säger hon till Aftonbladet. Nu hyllar tusentals hennes Facebook-inlägg om händelsen. Det var i fredags morse som Tova Eldstål såg den äldre mannen sitta i gruset intill tågstationen i Fagersta. Ingen av de tio personer som gick framför Tova stannade till. Men det gjorde Tova.Hon fick veta att mannen hade ont i bröstet och att han suttit där sedan 17-tiden kvällen innan. Nu har Tova skrivit ett inlägg på Facebook om händelsen. Över 80 000 har gillat texten och tusentals hyllar henne för insatsen."Jag har missat mitt tåg men jag lämnade',
"Vi har fortsatt noen ledige plasser til kveldens store smaking. Bli med og smak 11 toppviner, deriblant flere årganger av Premier og Grand Cru-chabliser samtidig som du lærer mer om vinområdet. Med sin friske, klare duft av mineraler og nyåpnede østers, har de knusktørre vinene fra Chablis fått stjernestatus i vinverdenen. Smak Chablis på sitt aller beste og lær mer om hva som gjør dette vinområdet så spesielt ved å bli med på denne eksklusive smakingen. Revolusjonerende Grand Cru Denne kvelden får vi besøk fra et av Chablis' mest berømte vinhus, William Fèvre. Takket være fremsynthet på 1960-tallet har huset har den største andelen av Grand Cru-vinmarker blant alle vinhusene i området. Hele 16 av de totalt 100 hektarene med de aller beste vinmarkene i Chablis tilhører eiendommen.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
parquet
- Dataset: parquet
- Size: 52,896,778 training samples
- Columns:
header
andbody
- Approximate statistics based on the first 1000 samples:
header body type string string details - min: 4 tokens
- mean: 12.12 tokens
- max: 178 tokens
- min: 13 tokens
- mean: 154.53 tokens
- max: 362 tokens
- Samples:
header body Miljø: 4
Ford Focus stv. med 115-hesters diesel har et oppgitt EU-forbruk på 0,42 l/mil og et oppgitt CO2-utslipp på 109 g/km. Begge deler er gode tall for bilstørrelsen. I praksis, ute på veien i vår 20 mil lange testløype, trenger Focus stv. 0,52 l/mil. Fortsatt er det et godkjent tall, men Focusen havner noen dieseldråper bak for eksempel den forbruksoptimerte Skoda Octavia GreenLine.
Invitation til klassefest 2013
17 okt Der kom brev med posten. (frit oversat til html af Leif) Kære gamle klassekammerater:Så er det endnu engang tid til klassekomsammen. Som aftalt sidste år er det **lørdag den 26. oktober:**Vi mødes kl. 13,00 foran indgangen til Århus Domkirke, Store Torv 1, 8000 Århus C.Herfra går vi til Besættelsesmuseet i Århus 1940-45 i Mathilde Fibrigers Have 2, hvor vi kan gå rundt og se på hvad der skete under besættelsen i Århus By.Når vi er færdige tager vi ud til mig, hvor vi vil få en god middag. Efterfølgende kaffe og senere natmad. Håber vi må få en rigtig hyggelig dag sammen. Du skal give besked, om du kommer senest den 16.10på telefon:eller Mobil:Beløb og opkrævning på dagen: ca. 300,- kr. Hilsen festudvalget: Hanne Gerner Thomsen
Konklusjon: 6
Hovedkarakteren er ikke et gjennomsnitt av delkarakterene, men et uttrykk for hvordan bilen totalt sett er i forhold til konkurrentene på det tidspunktet da testen ble gjennomført. Som nevnt allerede i innledningen: Vi mener Ford Focus 1,6 TDCI stv. totalt sett er den beste kompakte stasjonsvogna på markedet per i dag (juni 2011), og slik sett forsvarer den en sekser på terningen. Blant de sterkeste sidene er opplevelsen av at Focus gir mye god bil for pengene både når det gjelder kjøreegenskaper, plass og ytelser. Litt rom for forbedring finner vi først og fremst når det gjelder motoren. 1,5-litersdieselen er ikke lenger klassens mest kultiverte.
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "mini_batch_size": 128 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 2048learning_rate
: 0.0002warmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 2048per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0002weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0012 | 5 | 6.7754 |
0.0023 | 10 | 6.6896 |
0.0035 | 15 | 6.5047 |
0.0046 | 20 | 6.2826 |
0.0058 | 25 | 5.9985 |
0.0070 | 30 | 5.6479 |
0.0081 | 35 | 5.2283 |
0.0093 | 40 | 4.9118 |
0.0105 | 45 | 4.5856 |
0.0116 | 50 | 4.2933 |
0.0128 | 55 | 4.039 |
0.0139 | 60 | 3.8274 |
0.0151 | 65 | 3.6651 |
0.0163 | 70 | 3.5111 |
0.0174 | 75 | 3.3547 |
0.0186 | 80 | 3.2696 |
0.0197 | 85 | 3.1727 |
0.0209 | 90 | 3.0879 |
0.0221 | 95 | 3.0103 |
0.0232 | 100 | 2.9765 |
0.0244 | 105 | 2.8899 |
0.0256 | 110 | 2.8561 |
0.0267 | 115 | 2.8292 |
0.0279 | 120 | 2.7635 |
0.0290 | 125 | 2.7508 |
0.0302 | 130 | 2.705 |
0.0314 | 135 | 2.6831 |
0.0325 | 140 | 2.6545 |
0.0337 | 145 | 2.6175 |
0.0349 | 150 | 2.595 |
0.0360 | 155 | 2.5818 |
0.0372 | 160 | 2.537 |
0.0383 | 165 | 2.538 |
0.0395 | 170 | 2.5051 |
0.0407 | 175 | 2.502 |
0.0418 | 180 | 2.4705 |
0.0430 | 185 | 2.4809 |
0.0441 | 190 | 2.4443 |
0.0453 | 195 | 2.409 |
0.0465 | 200 | 2.3929 |
0.0476 | 205 | 2.3917 |
0.0488 | 210 | 2.3654 |
0.0500 | 215 | 2.3603 |
0.0511 | 220 | 2.3482 |
0.0523 | 225 | 2.3189 |
0.0534 | 230 | 2.3009 |
0.0546 | 235 | 2.3032 |
0.0558 | 240 | 2.2824 |
0.0569 | 245 | 2.2792 |
0.0581 | 250 | 2.2642 |
0.0592 | 255 | 2.2435 |
0.0604 | 260 | 2.2361 |
0.0616 | 265 | 2.2115 |
0.0627 | 270 | 2.2203 |
0.0639 | 275 | 2.1931 |
0.0651 | 280 | 2.2 |
0.0662 | 285 | 2.1862 |
0.0674 | 290 | 2.1615 |
0.0685 | 295 | 2.1783 |
0.0697 | 300 | 2.1515 |
0.0709 | 305 | 2.1318 |
0.0720 | 310 | 2.1403 |
0.0732 | 315 | 2.1252 |
0.0743 | 320 | 2.1199 |
0.0755 | 325 | 2.1036 |
0.0767 | 330 | 2.1033 |
0.0778 | 335 | 2.0887 |
0.0790 | 340 | 2.0715 |
0.0802 | 345 | 2.0709 |
0.0813 | 350 | 2.0488 |
0.0825 | 355 | 2.0484 |
0.0836 | 360 | 2.0373 |
0.0848 | 365 | 2.051 |
0.0860 | 370 | 2.0395 |
0.0871 | 375 | 2.0248 |
0.0883 | 380 | 2.0148 |
0.0895 | 385 | 2.0126 |
0.0906 | 390 | 1.9956 |
0.0918 | 395 | 1.987 |
0.0929 | 400 | 1.9875 |
0.0941 | 405 | 1.9698 |
0.0953 | 410 | 1.9596 |
0.0964 | 415 | 1.968 |
0.0976 | 420 | 1.9438 |
0.0987 | 425 | 1.9411 |
0.0999 | 430 | 1.9624 |
0.1011 | 435 | 1.938 |
0.1022 | 440 | 1.9295 |
0.1034 | 445 | 1.922 |
0.1046 | 450 | 1.9306 |
0.1057 | 455 | 1.921 |
0.1069 | 460 | 1.915 |
0.1080 | 465 | 1.883 |
0.1092 | 470 | 1.8886 |
0.1104 | 475 | 1.8886 |
0.1115 | 480 | 1.9004 |
0.1127 | 485 | 1.878 |
0.1138 | 490 | 1.8567 |
0.1150 | 495 | 1.8659 |
0.1162 | 500 | 1.8522 |
0.1173 | 505 | 1.8482 |
0.1185 | 510 | 1.8356 |
0.1197 | 515 | 1.8566 |
0.1208 | 520 | 1.8392 |
0.1220 | 525 | 1.8407 |
0.1231 | 530 | 1.8201 |
0.1243 | 535 | 1.8152 |
0.1255 | 540 | 1.8012 |
0.1266 | 545 | 1.819 |
0.1278 | 550 | 1.8131 |
0.1289 | 555 | 1.8167 |
0.1301 | 560 | 1.8123 |
0.1313 | 565 | 1.8035 |
0.1324 | 570 | 1.7781 |
0.1336 | 575 | 1.7684 |
0.1348 | 580 | 1.7633 |
0.1359 | 585 | 1.7765 |
0.1371 | 590 | 1.767 |
0.1382 | 595 | 1.7633 |
0.1394 | 600 | 1.7555 |
0.1406 | 605 | 1.7437 |
0.1417 | 610 | 1.7348 |
0.1429 | 615 | 1.7329 |
0.1441 | 620 | 1.7394 |
0.1452 | 625 | 1.7367 |
0.1464 | 630 | 1.737 |
0.1475 | 635 | 1.7063 |
0.1487 | 640 | 1.727 |
0.1499 | 645 | 1.732 |
0.1510 | 650 | 1.7172 |
0.1522 | 655 | 1.7164 |
0.1533 | 660 | 1.7175 |
0.1545 | 665 | 1.7119 |
0.1557 | 670 | 1.6951 |
0.1568 | 675 | 1.7021 |
0.1580 | 680 | 1.6708 |
0.1592 | 685 | 1.6839 |
0.1603 | 690 | 1.6834 |
0.1615 | 695 | 1.6743 |
0.1626 | 700 | 1.6755 |
0.1638 | 705 | 1.6798 |
0.1650 | 710 | 1.6671 |
0.1661 | 715 | 1.6563 |
0.1673 | 720 | 1.6555 |
0.1684 | 725 | 1.6413 |
0.1696 | 730 | 1.6471 |
0.1708 | 735 | 1.6532 |
0.1719 | 740 | 1.6481 |
0.1731 | 745 | 1.6429 |
0.1743 | 750 | 1.6488 |
0.1754 | 755 | 1.6475 |
0.1766 | 760 | 1.6213 |
0.1777 | 765 | 1.6367 |
0.1789 | 770 | 1.6319 |
0.1801 | 775 | 1.6204 |
0.1812 | 780 | 1.6377 |
0.1824 | 785 | 1.6203 |
0.1836 | 790 | 1.6117 |
0.1847 | 795 | 1.59 |
0.1859 | 800 | 1.6249 |
0.1870 | 805 | 1.5927 |
0.1882 | 810 | 1.6007 |
0.1894 | 815 | 1.5908 |
0.1905 | 820 | 1.6081 |
0.1917 | 825 | 1.5973 |
0.1928 | 830 | 1.6012 |
0.1940 | 835 | 1.5899 |
0.1952 | 840 | 1.589 |
0.1963 | 845 | 1.5766 |
0.1975 | 850 | 1.5613 |
0.1987 | 855 | 1.58 |
0.1998 | 860 | 1.5811 |
0.2010 | 865 | 1.5763 |
0.2021 | 870 | 1.5605 |
0.2033 | 875 | 1.5807 |
0.2045 | 880 | 1.5681 |
0.2056 | 885 | 1.5681 |
0.2068 | 890 | 1.551 |
0.2079 | 895 | 1.5418 |
0.2091 | 900 | 1.5523 |
0.2103 | 905 | 1.5508 |
0.2114 | 910 | 1.5463 |
0.2126 | 915 | 1.5356 |
0.2138 | 920 | 1.5573 |
0.2149 | 925 | 1.5439 |
0.2161 | 930 | 1.5383 |
0.2172 | 935 | 1.5248 |
0.2184 | 940 | 1.5263 |
0.2196 | 945 | 1.5249 |
0.2207 | 950 | 1.516 |
0.2219 | 955 | 1.5114 |
0.2230 | 960 | 1.5167 |
0.2242 | 965 | 1.5302 |
0.2254 | 970 | 1.5164 |
0.2265 | 975 | 1.5295 |
0.2277 | 980 | 1.5098 |
0.2289 | 985 | 1.5297 |
0.2300 | 990 | 1.5146 |
0.2312 | 995 | 1.5094 |
0.2323 | 1000 | 1.5022 |
0.2335 | 1005 | 1.5026 |
0.2347 | 1010 | 1.4903 |
0.2358 | 1015 | 1.4934 |
0.2370 | 1020 | 1.5048 |
0.2382 | 1025 | 1.4882 |
0.2393 | 1030 | 1.4692 |
0.2405 | 1035 | 1.4894 |
0.2416 | 1040 | 1.4774 |
0.2428 | 1045 | 1.4928 |
0.2440 | 1050 | 1.4861 |
0.2451 | 1055 | 1.4829 |
0.2463 | 1060 | 1.4738 |
0.2474 | 1065 | 1.4902 |
0.2486 | 1070 | 1.4784 |
0.2498 | 1075 | 1.4804 |
0.2509 | 1080 | 1.4692 |
0.2521 | 1085 | 1.4625 |
0.2533 | 1090 | 1.4511 |
0.2544 | 1095 | 1.4735 |
0.2556 | 1100 | 1.4547 |
0.2567 | 1105 | 1.4488 |
0.2579 | 1110 | 1.4585 |
0.2591 | 1115 | 1.455 |
0.2602 | 1120 | 1.4571 |
0.2614 | 1125 | 1.4617 |
0.2625 | 1130 | 1.4572 |
0.2637 | 1135 | 1.4501 |
0.2649 | 1140 | 1.4599 |
0.2660 | 1145 | 1.4469 |
0.2672 | 1150 | 1.4308 |
0.2684 | 1155 | 1.4329 |
0.2695 | 1160 | 1.441 |
0.2707 | 1165 | 1.431 |
0.2718 | 1170 | 1.4323 |
0.2730 | 1175 | 1.4194 |
0.2742 | 1180 | 1.4364 |
0.2753 | 1185 | 1.4364 |
0.2765 | 1190 | 1.4228 |
0.2776 | 1195 | 1.418 |
0.2788 | 1200 | 1.4246 |
0.2800 | 1205 | 1.4387 |
0.2811 | 1210 | 1.4188 |
0.2823 | 1215 | 1.4035 |
0.2835 | 1220 | 1.4233 |
0.2846 | 1225 | 1.4112 |
0.2858 | 1230 | 1.4284 |
0.2869 | 1235 | 1.4154 |
0.2881 | 1240 | 1.4167 |
0.2893 | 1245 | 1.4049 |
0.2904 | 1250 | 1.4064 |
0.2916 | 1255 | 1.4057 |
0.2928 | 1260 | 1.4204 |
0.2939 | 1265 | 1.4093 |
0.2951 | 1270 | 1.4053 |
0.2962 | 1275 | 1.4018 |
0.2974 | 1280 | 1.398 |
0.2986 | 1285 | 1.4039 |
0.2997 | 1290 | 1.3844 |
0.3009 | 1295 | 1.4017 |
0.3020 | 1300 | 1.3993 |
0.3032 | 1305 | 1.3962 |
0.3044 | 1310 | 1.3784 |
0.3055 | 1315 | 1.395 |
0.3067 | 1320 | 1.3998 |
0.3079 | 1325 | 1.3904 |
0.3090 | 1330 | 1.3858 |
0.3102 | 1335 | 1.378 |
0.3113 | 1340 | 1.3812 |
0.3125 | 1345 | 1.3912 |
0.3137 | 1350 | 1.3775 |
0.3148 | 1355 | 1.3628 |
0.3160 | 1360 | 1.3757 |
0.3171 | 1365 | 1.3852 |
0.3183 | 1370 | 1.377 |
0.3195 | 1375 | 1.3985 |
0.3206 | 1380 | 1.3703 |
0.3218 | 1385 | 1.3564 |
0.3230 | 1390 | 1.3658 |
0.3241 | 1395 | 1.3662 |
0.3253 | 1400 | 1.3536 |
0.3264 | 1405 | 1.3542 |
0.3276 | 1410 | 1.355 |
0.3288 | 1415 | 1.3569 |
0.3299 | 1420 | 1.3565 |
0.3311 | 1425 | 1.3538 |
0.3322 | 1430 | 1.3447 |
0.3334 | 1435 | 1.3368 |
0.3346 | 1440 | 1.3581 |
0.3357 | 1445 | 1.3601 |
0.3369 | 1450 | 1.3367 |
0.3381 | 1455 | 1.3406 |
0.3392 | 1460 | 1.3393 |
0.3404 | 1465 | 1.3631 |
0.3415 | 1470 | 1.338 |
0.3427 | 1475 | 1.3441 |
0.3439 | 1480 | 1.3405 |
0.3450 | 1485 | 1.3532 |
0.3462 | 1490 | 1.3478 |
0.3474 | 1495 | 1.3383 |
0.3485 | 1500 | 1.3346 |
0.3497 | 1505 | 1.341 |
0.3508 | 1510 | 1.3254 |
0.3520 | 1515 | 1.3296 |
0.3532 | 1520 | 1.328 |
0.3543 | 1525 | 1.3395 |
0.3555 | 1530 | 1.3242 |
0.3566 | 1535 | 1.318 |
0.3578 | 1540 | 1.3167 |
0.3590 | 1545 | 1.3238 |
0.3601 | 1550 | 1.314 |
0.3613 | 1555 | 1.3258 |
0.3625 | 1560 | 1.3189 |
0.3636 | 1565 | 1.3058 |
0.3648 | 1570 | 1.321 |
0.3659 | 1575 | 1.3003 |
0.3671 | 1580 | 1.3165 |
0.3683 | 1585 | 1.3083 |
0.3694 | 1590 | 1.3165 |
0.3706 | 1595 | 1.3179 |
0.3717 | 1600 | 1.3132 |
0.3729 | 1605 | 1.3005 |
0.3741 | 1610 | 1.3062 |
0.3752 | 1615 | 1.3179 |
0.3764 | 1620 | 1.315 |
0.3776 | 1625 | 1.306 |
0.3787 | 1630 | 1.304 |
0.3799 | 1635 | 1.2906 |
0.3810 | 1640 | 1.3015 |
0.3822 | 1645 | 1.2997 |
0.3834 | 1650 | 1.2931 |
0.3845 | 1655 | 1.2915 |
0.3857 | 1660 | 1.3021 |
0.3868 | 1665 | 1.2969 |
0.3880 | 1670 | 1.2941 |
0.3892 | 1675 | 1.2938 |
0.3903 | 1680 | 1.2968 |
0.3915 | 1685 | 1.2821 |
0.3927 | 1690 | 1.2786 |
0.3938 | 1695 | 1.2856 |
0.3950 | 1700 | 1.2785 |
0.3961 | 1705 | 1.2752 |
0.3973 | 1710 | 1.2946 |
0.3985 | 1715 | 1.2817 |
0.3996 | 1720 | 1.2799 |
0.4008 | 1725 | 1.2727 |
0.4020 | 1730 | 1.2851 |
0.4031 | 1735 | 1.2552 |
0.4043 | 1740 | 1.2824 |
0.4054 | 1745 | 1.2601 |
0.4066 | 1750 | 1.2851 |
0.4078 | 1755 | 1.267 |
0.4089 | 1760 | 1.2694 |
0.4101 | 1765 | 1.2699 |
0.4112 | 1770 | 1.2604 |
0.4124 | 1775 | 1.2739 |
0.4136 | 1780 | 1.2842 |
0.4147 | 1785 | 1.2686 |
0.4159 | 1790 | 1.2642 |
0.4171 | 1795 | 1.2634 |
0.4182 | 1800 | 1.2516 |
0.4194 | 1805 | 1.2644 |
0.4205 | 1810 | 1.2635 |
0.4217 | 1815 | 1.2516 |
0.4229 | 1820 | 1.2582 |
0.4240 | 1825 | 1.2513 |
0.4252 | 1830 | 1.2468 |
0.4263 | 1835 | 1.2388 |
0.4275 | 1840 | 1.2494 |
0.4287 | 1845 | 1.2383 |
0.4298 | 1850 | 1.2567 |
0.4310 | 1855 | 1.2518 |
0.4322 | 1860 | 1.2571 |
0.4333 | 1865 | 1.2445 |
0.4345 | 1870 | 1.251 |
0.4356 | 1875 | 1.2446 |
0.4368 | 1880 | 1.2315 |
0.4380 | 1885 | 1.2382 |
0.4391 | 1890 | 1.256 |
0.4403 | 1895 | 1.2446 |
0.4414 | 1900 | 1.2286 |
0.4426 | 1905 | 1.2411 |
0.4438 | 1910 | 1.2392 |
0.4449 | 1915 | 1.233 |
0.4461 | 1920 | 1.2455 |
0.4473 | 1925 | 1.2309 |
0.4484 | 1930 | 1.2178 |
0.4496 | 1935 | 1.2253 |
0.4507 | 1940 | 1.2295 |
0.4519 | 1945 | 1.229 |
0.4531 | 1950 | 1.2456 |
0.4542 | 1955 | 1.2366 |
0.4554 | 1960 | 1.2273 |
0.4566 | 1965 | 1.2208 |
0.4577 | 1970 | 1.2291 |
0.4589 | 1975 | 1.2083 |
0.4600 | 1980 | 1.2342 |
0.4612 | 1985 | 1.2237 |
0.4624 | 1990 | 1.2265 |
0.4635 | 1995 | 1.2098 |
0.4647 | 2000 | 1.2258 |
0.4658 | 2005 | 1.2357 |
0.4670 | 2010 | 1.2194 |
0.4682 | 2015 | 1.2258 |
0.4693 | 2020 | 1.2014 |
0.4705 | 2025 | 1.2051 |
0.4717 | 2030 | 1.2035 |
0.4728 | 2035 | 1.2179 |
0.4740 | 2040 | 1.2241 |
0.4751 | 2045 | 1.2255 |
0.4763 | 2050 | 1.2265 |
0.4775 | 2055 | 1.2163 |
0.4786 | 2060 | 1.211 |
0.4798 | 2065 | 1.2178 |
0.4809 | 2070 | 1.2344 |
0.4821 | 2075 | 1.2089 |
0.4833 | 2080 | 1.2031 |
0.4844 | 2085 | 1.2128 |
0.4856 | 2090 | 1.2074 |
0.4868 | 2095 | 1.2071 |
0.4879 | 2100 | 1.2005 |
0.4891 | 2105 | 1.2133 |
0.4902 | 2110 | 1.1913 |
0.4914 | 2115 | 1.2054 |
0.4926 | 2120 | 1.2071 |
0.4937 | 2125 | 1.1938 |
0.4949 | 2130 | 1.1956 |
0.4961 | 2135 | 1.1932 |
0.4972 | 2140 | 1.2124 |
0.4984 | 2145 | 1.2098 |
0.4995 | 2150 | 1.216 |
0.5007 | 2155 | 1.2135 |
0.5019 | 2160 | 1.2 |
0.5030 | 2165 | 1.2118 |
0.5042 | 2170 | 1.1988 |
0.5053 | 2175 | 1.1973 |
0.5065 | 2180 | 1.2039 |
0.5077 | 2185 | 1.1959 |
0.5088 | 2190 | 1.1924 |
0.5100 | 2195 | 1.1875 |
0.5112 | 2200 | 1.1806 |
0.5123 | 2205 | 1.1933 |
0.5135 | 2210 | 1.1837 |
0.5146 | 2215 | 1.1876 |
0.5158 | 2220 | 1.1901 |
0.5170 | 2225 | 1.1971 |
0.5181 | 2230 | 1.2016 |
0.5193 | 2235 | 1.1849 |
0.5204 | 2240 | 1.1823 |
0.5216 | 2245 | 1.1757 |
0.5228 | 2250 | 1.1816 |
0.5239 | 2255 | 1.18 |
0.5251 | 2260 | 1.1879 |
0.5263 | 2265 | 1.1867 |
0.5274 | 2270 | 1.1734 |
0.5286 | 2275 | 1.1798 |
0.5297 | 2280 | 1.1848 |
0.5309 | 2285 | 1.1829 |
0.5321 | 2290 | 1.177 |
0.5332 | 2295 | 1.1795 |
0.5344 | 2300 | 1.1725 |
0.5355 | 2305 | 1.1747 |
0.5367 | 2310 | 1.1736 |
0.5379 | 2315 | 1.1777 |
0.5390 | 2320 | 1.1897 |
0.5402 | 2325 | 1.1792 |
0.5414 | 2330 | 1.1843 |
0.5425 | 2335 | 1.1762 |
0.5437 | 2340 | 1.1804 |
0.5448 | 2345 | 1.1728 |
0.5460 | 2350 | 1.1514 |
0.5472 | 2355 | 1.1747 |
0.5483 | 2360 | 1.1658 |
0.5495 | 2365 | 1.1763 |
0.5507 | 2370 | 1.1588 |
0.5518 | 2375 | 1.1641 |
0.5530 | 2380 | 1.1714 |
0.5541 | 2385 | 1.1697 |
0.5553 | 2390 | 1.1567 |
0.5565 | 2395 | 1.1696 |
0.5576 | 2400 | 1.1578 |
0.5588 | 2405 | 1.1683 |
0.5599 | 2410 | 1.1547 |
0.5611 | 2415 | 1.1642 |
0.5623 | 2420 | 1.1755 |
0.5634 | 2425 | 1.159 |
0.5646 | 2430 | 1.1602 |
0.5658 | 2435 | 1.1652 |
0.5669 | 2440 | 1.1478 |
0.5681 | 2445 | 1.1542 |
0.5692 | 2450 | 1.15 |
0.5704 | 2455 | 1.1665 |
0.5716 | 2460 | 1.1765 |
0.5727 | 2465 | 1.1598 |
0.5739 | 2470 | 1.1448 |
0.5750 | 2475 | 1.1431 |
0.5762 | 2480 | 1.1503 |
0.5774 | 2485 | 1.1433 |
0.5785 | 2490 | 1.1556 |
0.5797 | 2495 | 1.1692 |
0.5809 | 2500 | 1.1454 |
0.5820 | 2505 | 1.15 |
0.5832 | 2510 | 1.1528 |
0.5843 | 2515 | 1.1454 |
0.5855 | 2520 | 1.1656 |
0.5867 | 2525 | 1.1455 |
0.5878 | 2530 | 1.156 |
0.5890 | 2535 | 1.1489 |
0.5901 | 2540 | 1.1442 |
0.5913 | 2545 | 1.1466 |
0.5925 | 2550 | 1.1437 |
0.5936 | 2555 | 1.1579 |
0.5948 | 2560 | 1.1484 |
0.5960 | 2565 | 1.1399 |
0.5971 | 2570 | 1.1475 |
0.5983 | 2575 | 1.1486 |
0.5994 | 2580 | 1.1612 |
0.6006 | 2585 | 1.1435 |
0.6018 | 2590 | 1.1439 |
0.6029 | 2595 | 1.1427 |
0.6041 | 2600 | 1.1468 |
0.6053 | 2605 | 1.1391 |
0.6064 | 2610 | 1.1427 |
0.6076 | 2615 | 1.1428 |
0.6087 | 2620 | 1.1415 |
0.6099 | 2625 | 1.1345 |
0.6111 | 2630 | 1.1356 |
0.6122 | 2635 | 1.1274 |
0.6134 | 2640 | 1.1472 |
0.6145 | 2645 | 1.1364 |
0.6157 | 2650 | 1.1293 |
0.6169 | 2655 | 1.1333 |
0.6180 | 2660 | 1.1371 |
0.6192 | 2665 | 1.1486 |
0.6204 | 2670 | 1.1271 |
0.6215 | 2675 | 1.1371 |
0.6227 | 2680 | 1.1298 |
0.6238 | 2685 | 1.1414 |
0.625 | 2690 | 1.1365 |
0.6262 | 2695 | 1.1484 |
0.6273 | 2700 | 1.1248 |
0.6285 | 2705 | 1.1291 |
0.6296 | 2710 | 1.1267 |
0.6308 | 2715 | 1.121 |
0.6320 | 2720 | 1.1414 |
0.6331 | 2725 | 1.1362 |
0.6343 | 2730 | 1.1206 |
0.6355 | 2735 | 1.1337 |
0.6366 | 2740 | 1.1122 |
0.6378 | 2745 | 1.122 |
0.6389 | 2750 | 1.1245 |
0.6401 | 2755 | 1.1426 |
0.6413 | 2760 | 1.1233 |
0.6424 | 2765 | 1.1398 |
0.6436 | 2770 | 1.1214 |
0.6447 | 2775 | 1.1152 |
0.6459 | 2780 | 1.1348 |
0.6471 | 2785 | 1.1238 |
0.6482 | 2790 | 1.1175 |
0.6494 | 2795 | 1.1153 |
0.6506 | 2800 | 1.1153 |
0.6517 | 2805 | 1.1164 |
0.6529 | 2810 | 1.1155 |
0.6540 | 2815 | 1.108 |
0.6552 | 2820 | 1.1138 |
0.6564 | 2825 | 1.1121 |
0.6575 | 2830 | 1.1205 |
0.6587 | 2835 | 1.1252 |
0.6599 | 2840 | 1.1151 |
0.6610 | 2845 | 1.1209 |
0.6622 | 2850 | 1.1231 |
0.6633 | 2855 | 1.1212 |
0.6645 | 2860 | 1.1151 |
0.6657 | 2865 | 1.1143 |
0.6668 | 2870 | 1.1147 |
0.6680 | 2875 | 1.1208 |
0.6691 | 2880 | 1.1132 |
0.6703 | 2885 | 1.1 |
0.6715 | 2890 | 1.1087 |
0.6726 | 2895 | 1.1216 |
0.6738 | 2900 | 1.1112 |
0.6750 | 2905 | 1.1221 |
0.6761 | 2910 | 1.095 |
0.6773 | 2915 | 1.1068 |
0.6784 | 2920 | 1.1092 |
0.6796 | 2925 | 1.1145 |
0.6808 | 2930 | 1.1153 |
0.6819 | 2935 | 1.1082 |
0.6831 | 2940 | 1.1001 |
0.6842 | 2945 | 1.1154 |
0.6854 | 2950 | 1.1079 |
0.6866 | 2955 | 1.1051 |
0.6877 | 2960 | 1.1073 |
0.6889 | 2965 | 1.1024 |
0.6901 | 2970 | 1.1029 |
0.6912 | 2975 | 1.0998 |
0.6924 | 2980 | 1.1144 |
0.6935 | 2985 | 1.1092 |
0.6947 | 2990 | 1.1043 |
0.6959 | 2995 | 1.1095 |
0.6970 | 3000 | 1.0948 |
0.6982 | 3005 | 1.0866 |
0.6993 | 3010 | 1.1011 |
0.7005 | 3015 | 1.1002 |
0.7017 | 3020 | 1.0948 |
0.7028 | 3025 | 1.0962 |
0.7040 | 3030 | 1.0981 |
0.7052 | 3035 | 1.0909 |
0.7063 | 3040 | 1.0945 |
0.7075 | 3045 | 1.1108 |
0.7086 | 3050 | 1.1119 |
0.7098 | 3055 | 1.0856 |
0.7110 | 3060 | 1.1141 |
0.7121 | 3065 | 1.1079 |
0.7133 | 3070 | 1.099 |
0.7145 | 3075 | 1.0813 |
0.7156 | 3080 | 1.0849 |
0.7168 | 3085 | 1.0927 |
0.7179 | 3090 | 1.0949 |
0.7191 | 3095 | 1.0974 |
0.7203 | 3100 | 1.1004 |
0.7214 | 3105 | 1.0897 |
0.7226 | 3110 | 1.0958 |
0.7237 | 3115 | 1.0995 |
0.7249 | 3120 | 1.0982 |
0.7261 | 3125 | 1.0986 |
0.7272 | 3130 | 1.0971 |
0.7284 | 3135 | 1.0797 |
0.7296 | 3140 | 1.0915 |
0.7307 | 3145 | 1.1058 |
0.7319 | 3150 | 1.0822 |
0.7330 | 3155 | 1.0806 |
0.7342 | 3160 | 1.0762 |
0.7354 | 3165 | 1.0965 |
0.7365 | 3170 | 1.0853 |
0.7377 | 3175 | 1.0873 |
0.7388 | 3180 | 1.1015 |
0.7400 | 3185 | 1.0832 |
0.7412 | 3190 | 1.0919 |
0.7423 | 3195 | 1.0838 |
0.7435 | 3200 | 1.079 |
0.7447 | 3205 | 1.0802 |
0.7458 | 3210 | 1.0723 |
0.7470 | 3215 | 1.0861 |
0.7481 | 3220 | 1.078 |
0.7493 | 3225 | 1.0847 |
0.7505 | 3230 | 1.0907 |
0.7516 | 3235 | 1.0874 |
0.7528 | 3240 | 1.0883 |
0.7539 | 3245 | 1.0897 |
0.7551 | 3250 | 1.0842 |
0.7563 | 3255 | 1.0921 |
0.7574 | 3260 | 1.099 |
0.7586 | 3265 | 1.0753 |
0.7598 | 3270 | 1.0921 |
0.7609 | 3275 | 1.0847 |
0.7621 | 3280 | 1.0921 |
0.7632 | 3285 | 1.0809 |
0.7644 | 3290 | 1.088 |
0.7656 | 3295 | 1.0812 |
0.7667 | 3300 | 1.0788 |
0.7679 | 3305 | 1.0998 |
0.7691 | 3310 | 1.0788 |
0.7702 | 3315 | 1.0863 |
0.7714 | 3320 | 1.0827 |
0.7725 | 3325 | 1.0806 |
0.7737 | 3330 | 1.0776 |
0.7749 | 3335 | 1.0825 |
0.7760 | 3340 | 1.067 |
0.7772 | 3345 | 1.0735 |
0.7783 | 3350 | 1.0826 |
0.7795 | 3355 | 1.0692 |
0.7807 | 3360 | 1.0827 |
0.7818 | 3365 | 1.0868 |
0.7830 | 3370 | 1.0696 |
0.7842 | 3375 | 1.0739 |
0.7853 | 3380 | 1.0759 |
0.7865 | 3385 | 1.0706 |
0.7876 | 3390 | 1.0811 |
0.7888 | 3395 | 1.0672 |
0.7900 | 3400 | 1.0534 |
0.7911 | 3405 | 1.0635 |
0.7923 | 3410 | 1.0737 |
0.7934 | 3415 | 1.0707 |
0.7946 | 3420 | 1.0642 |
0.7958 | 3425 | 1.0744 |
0.7969 | 3430 | 1.0738 |
0.7981 | 3435 | 1.0675 |
0.7993 | 3440 | 1.0705 |
0.8004 | 3445 | 1.0682 |
0.8016 | 3450 | 1.0593 |
0.8027 | 3455 | 1.0702 |
0.8039 | 3460 | 1.0688 |
0.8051 | 3465 | 1.068 |
0.8062 | 3470 | 1.0678 |
0.8074 | 3475 | 1.0563 |
0.8086 | 3480 | 1.0759 |
0.8097 | 3485 | 1.074 |
0.8109 | 3490 | 1.0712 |
0.8120 | 3495 | 1.0707 |
0.8132 | 3500 | 1.0635 |
0.8144 | 3505 | 1.077 |
0.8155 | 3510 | 1.0633 |
0.8167 | 3515 | 1.0731 |
0.8178 | 3520 | 1.0726 |
0.8190 | 3525 | 1.0648 |
0.8202 | 3530 | 1.0655 |
0.8213 | 3535 | 1.0552 |
0.8225 | 3540 | 1.0488 |
0.8237 | 3545 | 1.0544 |
0.8248 | 3550 | 1.0677 |
0.8260 | 3555 | 1.066 |
0.8271 | 3560 | 1.0545 |
0.8283 | 3565 | 1.0621 |
0.8295 | 3570 | 1.0716 |
0.8306 | 3575 | 1.0577 |
0.8318 | 3580 | 1.0626 |
0.8329 | 3585 | 1.0589 |
0.8341 | 3590 | 1.0759 |
0.8353 | 3595 | 1.0544 |
0.8364 | 3600 | 1.0736 |
0.8376 | 3605 | 1.0604 |
0.8388 | 3610 | 1.0471 |
0.8399 | 3615 | 1.0627 |
0.8411 | 3620 | 1.0595 |
0.8422 | 3625 | 1.0529 |
0.8434 | 3630 | 1.0629 |
0.8446 | 3635 | 1.0614 |
0.8457 | 3640 | 1.0585 |
0.8469 | 3645 | 1.0584 |
0.8480 | 3650 | 1.0588 |
0.8492 | 3655 | 1.0555 |
0.8504 | 3660 | 1.0452 |
0.8515 | 3665 | 1.0603 |
0.8527 | 3670 | 1.0568 |
0.8539 | 3675 | 1.0623 |
0.8550 | 3680 | 1.0397 |
0.8562 | 3685 | 1.0747 |
0.8573 | 3690 | 1.0478 |
0.8585 | 3695 | 1.0514 |
0.8597 | 3700 | 1.0474 |
0.8608 | 3705 | 1.0469 |
0.8620 | 3710 | 1.0526 |
0.8632 | 3715 | 1.041 |
0.8643 | 3720 | 1.0483 |
0.8655 | 3725 | 1.0479 |
0.8666 | 3730 | 1.0536 |
0.8678 | 3735 | 1.0515 |
0.8690 | 3740 | 1.0547 |
0.8701 | 3745 | 1.0699 |
0.8713 | 3750 | 1.0525 |
0.8724 | 3755 | 1.0561 |
0.8736 | 3760 | 1.0459 |
0.8748 | 3765 | 1.0619 |
0.8759 | 3770 | 1.0325 |
0.8771 | 3775 | 1.041 |
0.8783 | 3780 | 1.0414 |
0.8794 | 3785 | 1.0516 |
0.8806 | 3790 | 1.0452 |
0.8817 | 3795 | 1.0402 |
0.8829 | 3800 | 1.0447 |
0.8841 | 3805 | 1.0482 |
0.8852 | 3810 | 1.0455 |
0.8864 | 3815 | 1.041 |
0.8875 | 3820 | 1.0485 |
0.8887 | 3825 | 1.0402 |
0.8899 | 3830 | 1.052 |
0.8910 | 3835 | 1.0348 |
0.8922 | 3840 | 1.0369 |
0.8934 | 3845 | 1.0535 |
0.8945 | 3850 | 1.0426 |
0.8957 | 3855 | 1.0474 |
0.8968 | 3860 | 1.0293 |
0.8980 | 3865 | 1.0368 |
0.8992 | 3870 | 1.038 |
0.9003 | 3875 | 1.0447 |
0.9015 | 3880 | 1.0476 |
0.9026 | 3885 | 1.0422 |
0.9038 | 3890 | 1.0314 |
0.9050 | 3895 | 1.0331 |
0.9061 | 3900 | 1.0434 |
0.9073 | 3905 | 1.0251 |
0.9085 | 3910 | 1.05 |
0.9096 | 3915 | 1.0289 |
0.9108 | 3920 | 1.0338 |
0.9119 | 3925 | 1.0319 |
0.9131 | 3930 | 1.0234 |
0.9143 | 3935 | 1.0376 |
0.9154 | 3940 | 1.0314 |
0.9166 | 3945 | 1.0401 |
0.9178 | 3950 | 1.0501 |
0.9189 | 3955 | 1.0392 |
0.9201 | 3960 | 1.0241 |
0.9212 | 3965 | 1.0286 |
0.9224 | 3970 | 1.0419 |
0.9236 | 3975 | 1.0311 |
0.9247 | 3980 | 1.0418 |
0.9259 | 3985 | 1.0299 |
0.9270 | 3990 | 1.0395 |
0.9282 | 3995 | 1.0287 |
0.9294 | 4000 | 1.0306 |
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 97
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for nicher92/embedding_model_one_epoch
Base model
KBLab/bert-base-swedish-cased