Climate-Science-Reranker

This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L6-v2 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: cross-encoder/ms-marco-MiniLM-L6-v2
  • Maximum Sequence Length: 512 tokens
  • Number of Output Labels: 1 label
  • Language: en
  • License: apache-2.0

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the ๐Ÿค— Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
    ["The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.", 'Currently there is renewed interest in harnessing the vast tidal resource to combat the twin challenges of climate change and energy security. However, within the UK no tidal barrage proposals have passed the development stage, this is due to a combination of high cost and environmental concerns. This paper demonstrates how a framework, such as the North West Hydro Resource Model can be applied to tidal barrages, with the Mersey barrage as a case study. The model materialised in order to provide developers with a tool to successfully identify the capacity of hydropower schemes in a specific location. A key feature of the resource model is the understanding that there is no single barrier to the utilisation of small hydropower but several obstacles, which together impede development. Thus, this paper contributes in part to a fully holistic treatment of tidal barrages, recognising that apart from energy generation, other environmental, societal and economic opportunities arise and must be fully investigated for robust decision-making. This study demonstrates how considering the societal needs of the people and the necessity for compensatory habitats, for example, an organic architectural design has developed, which aims to enhance rather than detract from the Mersey.'],
    ["The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.", 'Rainbows contribute to human wellbeing by providing an inspiring connection to nature. Because the rainbow is an atmospheric optical phenomenon that results from the refraction of sunlight by rainwater droplets, changes in precipitation and cloud cover due to anthropogenic climate forcing will alter rainbow distribution. Yet, we lack a basic understanding of the current spatial distribution of rainbows and how climate change might alter this pattern. To assess how climate change might affect rainbow viewing opportunities, we developed a global database of crowd-sourced photographed rainbows, trained an empirical model of rainbow occurrence, and applied this model to present-day climate and three future climate scenarios. Results suggest that the average terrestrial location on Earth currently has 117 ยฑ 71 days per year with conditions suitable for rainbows. By 2100, climate change is likely to generate a 4.0โ€“4.9 % net increase in mean global annual rainbow-days (i.e., days with at least one rainbow), with the greatest change under the highest emission scenario. Around 21โ€“34 % of land areas will lose rainbow-days and 66โ€“79 % will gain rainbow-days, with rainbow gain hotspots mainly in high-latitude and high-elevation regions with smaller human populations. Our research demonstrates that alterations to non-tangible environmental attributes due to climate change could be significant and are worthy of consideration and mitigation.'],
    ["The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.", 'The ascendancy of dinosaurs to become dominant components of terrestrial ecosystems was a pivotal event in the history of life, yet the drivers of their early evolution and biodiversity are poorly understood.1Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.Biol. Lett. 2008; 4: 733-736https://doi.org/10.1098/rsbl.2008.0441Crossref PubMed Scopus (105) Google Scholar,2Irmis R.B. Evaluating hypotheses for the early diversification of dinosaurs.Earth Environ. Sci. Trans. R. Soc. Edinb. 2010; 101: 397-426https://doi.org/10.1017/S1755691011020068Crossref Scopus (94) Google Scholar,3Benton M.J. Forth J. Langer M.C. Models for the rise of the dinosaurs.Curr. Biol. 2014; 24: R87-R95https://doi.org/10.1016/j.cub.2013.11.063Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar During their early diversification in the Late Triassic, dinosaurs were initially rare and geographically restricted, only attaining wider distributions and greater abundance following the end-Triassic mass extinction event.4Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs.Science. 2008; 321: 1485-1488https://doi.org/10.1126/science.1161833Crossref PubMed Scopus (334) Google Scholar,5Langer M.C. Ezcurra M.D. Bittencourt J.S. Novas F.E. The origin and early evolution of dinosaurs.Biol. Rev. Camb. Philos. Soc. 2010; 85: 55-110https://doi.org/10.1111/j.1469-185X.2009.00094.xCrossref PubMed Scopus (212) Google Scholar,6Langer M.C. Godoy P.L. So volcanoes created the dinosaurs? a quantitative characterization of the early evolution of terrestrial pan-aves.Front. Earth Sci. 2022; 10https://doi.org/10.3389/feart.2022.899562Crossref PubMed Scopus (3) Google Scholar This pattern is consistent with an opportunistic expansion model, initiated by the extinction of co-occurring groups such as aetosaurs, rauisuchians, and therapsids.4Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs.Science. 2008; 321: 1485-1488https://doi.org/10.1126/science.1161833Crossref PubMed Scopus (334) Google Scholar,7Tucker M.E. Benton M.J. Triassic environments, climates and reptile evolution.Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982; 40: 361-379https://doi.org/10.1016/0031-0182(82)90034-7Crossref Scopus (89) Google Scholar,8Benton M.J. Dinosaur success in the triassic: a noncompetitive ecological model.Q. Rev. Biol. 1983; 58: 29-55Crossref Scopus (170) Google Scholar However, this pattern could instead be a response to changes in global climatic distributions through the Triassic to Jurassic transition, especially given the increasing evidence that climate played a key role in constraining Triassic dinosaur distributions.7Tucker M.E. Benton M.J. Triassic environments, climates and reptile evolution.Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982; 40: 361-379https://doi.org/10.1016/0031-0182(82)90034-7Crossref Scopus (89) Google Scholar,9Whiteside J.H. Lindstrรถm S. Irmis R.B. Glasspool I.J. Schaller M.F. Dunlavey M. Nesbitt S.J. Smith N.D. Turner A.H. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.Proc. Natl. Acad. Sci. USA. 2015; 112: 7909-7913https://doi.org/10.1073/pnas.1505252112Crossref PubMed Scopus (61) Google Scholar,10Bernardi M. Gianolla P. Petti F.M. Mietto P. Benton M.J. Dinosaur diversification linked with the Carnian pluvial episode.Nat. Commun. 2018; 9: 1499https://doi.org/10.1038/s41467-018-03996-1Crossref PubMed Scopus (87) Google Scholar,11Lovelace D.M. Hartman S.A. Mathewson P.D. Linzmeier B.J. Porter W.P. Modeling Dragons: using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs.PLoS One. 2020; 15e0223872https://doi.org/10.1371/journal.pone.0223872Crossref Scopus (8) Google Scholar,12Mancuso A.C. Benavente C.A. Irmis R.B. Mundil R. Evidence for the Carnian pluvial episode in Gondwana: new multiproxy climate records and their bearing on early dinosaur diversification.Gondwana Res. 2020; 86: 104-125https://doi.org/10.1016/j.gr.2020.05.009Crossref Scopus (35) Google Scholar,13Mancuso A.C. Irmis R.B. Pedernera T.E. Gaetano L.C. Benavente C.A. Breeden III B.T. Paleoenvironmental and biotic changes in the late triassic of Argentina: testing hypotheses of abiotic forcing at the basin scale.Front. Earth Sci. 2022; 10https://doi.org/10.3389/feart.2022.883788Crossref PubMed Scopus (4) Google Scholar,14Kent D.V. Clemmensen L.B. Northward dispersal of dinosaurs from Gondwana to Greenland at the mid-Norian (215โ€“212 Ma, Late Triassic) dip in atmospheric pCO2.Proc. Natl. Acad. Sci. USA. 2021; 118e2020778118https://doi.org/10.1073/pnas.2020778118Crossref Scopus (16) Google Scholar,15Griffin C.T. Wynd B.M. Munyikwa D. Broderick T.J. Zondo M. Tolan S. Langer M.C. Nesbitt S.J. Taruvinga H.R. Africa\'s oldest dinosaurs reveal early suppression of dinosaur distribution.Nature. 2022; 609: 313-319https://doi.org/10.1038/s41586-022-05133-xCrossref PubMed Scopus (4) Google Scholar,16Olsen P. Sha J. Fang Y. Chang C. Whiteside J.H. Kinney S. Sues H.-D. Kent D. Schaller M. Vajda V. Arctic ice and the ecological rise of the dinosaurs.Sci. Adv. 2022; 8eabo6342https://doi.org/10.1126/sciadv.abo6342Crossref Scopus (5) Google Scholar Here, we test this hypothesis and elucidate how climate influenced early dinosaur distribution by quantitatively examining changes in dinosaur and tetrapod "climatic niche space" across the Triassic-Jurassic boundary. Statistical analyses show that Late Triassic sauropodomorph dinosaurs occupied a more restricted climatic niche space than other tetrapods and dinosaurs, being excluded from the hottest, low-latitude climate zones. A subsequent, earliest Jurassic expansion of sauropodomorph geographic distribution is linked to the expansion of their preferred climatic conditions. Evolutionary model-fitting analyses provide evidence for an important evolutionary shift from cooler to warmer climatic niches during the origin of Sauropoda. These results are consistent with the hypothesis that global abundance of sauropodomorph dinosaurs was facilitated by climatic change and provide support for the key role of climate in the ascendancy of dinosaurs.'],
    ["The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.", 'The development of technologies to slow climate change has been identified as a global imperative. Nonetheless, such โ€˜greenโ€™ technologies can potentially have negative impacts on biodiversity. We explored how climate change and the mining of lithium for green technologies influence surface water availability, primary productivity and the abundance of three threatened and economically important flamingo species in the โ€˜Lithium Triangleโ€™ of the Chilean Andes. We combined climate and primary productivity data with remotely sensed measures of surface water levels and a 30-year dataset on flamingo abundance using structural equation modelling. We found that, regionally, flamingo abundance fluctuated dramatically from year-to-year in response to variation in surface water levels and primary productivity but did not exhibit any temporal trends. Locally, in the Salar de Atacamaโ€”where lithium mining is focusedโ€”we found that mining was negatively correlated with the abundance of two of the three flamingo species. These results suggest continued increases in lithium mining and declines in surface water could soon have dramatic effects on flamingo abundance across their range. Efforts to slow the expansion of mining and the impacts of climate change are, therefore, urgently needed to benefit local biodiversity and the local human economy that depends on it.'],
    ["The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.", 'Rivers can abruptly shift pathways in rare events called avulsions, which cause devastating floods. The controls on avulsion locations are poorly understood as a result of sparse data on such features. We analyzed nearly 50 years of satellite imagery and documented 113 avulsions across the globe that indicate three distinct controls on avulsion location. Avulsions on fans coincide with valley-confinement change, whereas avulsions on deltas are primarily clustered within the backwater zone, indicating a control by spatial flow deceleration or acceleration during floods. However, 38% of avulsions on deltas occurred upstream of backwater effects. These events occurred in steep, sediment-rich rivers in tropical and desert environments. Our results indicate that avulsion location on deltas is set by the upstream extent of flood-driven erosion, which is typically limited to the backwater zone but can extend far upstream in steep, sediment-laden rivers. Our findings elucidate how avulsion hazards might respond to land use and climate change.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    "The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.",
    [
        'Currently there is renewed interest in harnessing the vast tidal resource to combat the twin challenges of climate change and energy security. However, within the UK no tidal barrage proposals have passed the development stage, this is due to a combination of high cost and environmental concerns. This paper demonstrates how a framework, such as the North West Hydro Resource Model can be applied to tidal barrages, with the Mersey barrage as a case study. The model materialised in order to provide developers with a tool to successfully identify the capacity of hydropower schemes in a specific location. A key feature of the resource model is the understanding that there is no single barrier to the utilisation of small hydropower but several obstacles, which together impede development. Thus, this paper contributes in part to a fully holistic treatment of tidal barrages, recognising that apart from energy generation, other environmental, societal and economic opportunities arise and must be fully investigated for robust decision-making. This study demonstrates how considering the societal needs of the people and the necessity for compensatory habitats, for example, an organic architectural design has developed, which aims to enhance rather than detract from the Mersey.',
        'Rainbows contribute to human wellbeing by providing an inspiring connection to nature. Because the rainbow is an atmospheric optical phenomenon that results from the refraction of sunlight by rainwater droplets, changes in precipitation and cloud cover due to anthropogenic climate forcing will alter rainbow distribution. Yet, we lack a basic understanding of the current spatial distribution of rainbows and how climate change might alter this pattern. To assess how climate change might affect rainbow viewing opportunities, we developed a global database of crowd-sourced photographed rainbows, trained an empirical model of rainbow occurrence, and applied this model to present-day climate and three future climate scenarios. Results suggest that the average terrestrial location on Earth currently has 117 ยฑ 71 days per year with conditions suitable for rainbows. By 2100, climate change is likely to generate a 4.0โ€“4.9 % net increase in mean global annual rainbow-days (i.e., days with at least one rainbow), with the greatest change under the highest emission scenario. Around 21โ€“34 % of land areas will lose rainbow-days and 66โ€“79 % will gain rainbow-days, with rainbow gain hotspots mainly in high-latitude and high-elevation regions with smaller human populations. Our research demonstrates that alterations to non-tangible environmental attributes due to climate change could be significant and are worthy of consideration and mitigation.',
        'The ascendancy of dinosaurs to become dominant components of terrestrial ecosystems was a pivotal event in the history of life, yet the drivers of their early evolution and biodiversity are poorly understood.1Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.Biol. Lett. 2008; 4: 733-736https://doi.org/10.1098/rsbl.2008.0441Crossref PubMed Scopus (105) Google Scholar,2Irmis R.B. Evaluating hypotheses for the early diversification of dinosaurs.Earth Environ. Sci. Trans. R. Soc. Edinb. 2010; 101: 397-426https://doi.org/10.1017/S1755691011020068Crossref Scopus (94) Google Scholar,3Benton M.J. Forth J. Langer M.C. Models for the rise of the dinosaurs.Curr. Biol. 2014; 24: R87-R95https://doi.org/10.1016/j.cub.2013.11.063Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar During their early diversification in the Late Triassic, dinosaurs were initially rare and geographically restricted, only attaining wider distributions and greater abundance following the end-Triassic mass extinction event.4Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs.Science. 2008; 321: 1485-1488https://doi.org/10.1126/science.1161833Crossref PubMed Scopus (334) Google Scholar,5Langer M.C. Ezcurra M.D. Bittencourt J.S. Novas F.E. The origin and early evolution of dinosaurs.Biol. Rev. Camb. Philos. Soc. 2010; 85: 55-110https://doi.org/10.1111/j.1469-185X.2009.00094.xCrossref PubMed Scopus (212) Google Scholar,6Langer M.C. Godoy P.L. So volcanoes created the dinosaurs? a quantitative characterization of the early evolution of terrestrial pan-aves.Front. Earth Sci. 2022; 10https://doi.org/10.3389/feart.2022.899562Crossref PubMed Scopus (3) Google Scholar This pattern is consistent with an opportunistic expansion model, initiated by the extinction of co-occurring groups such as aetosaurs, rauisuchians, and therapsids.4Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs.Science. 2008; 321: 1485-1488https://doi.org/10.1126/science.1161833Crossref PubMed Scopus (334) Google Scholar,7Tucker M.E. Benton M.J. Triassic environments, climates and reptile evolution.Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982; 40: 361-379https://doi.org/10.1016/0031-0182(82)90034-7Crossref Scopus (89) Google Scholar,8Benton M.J. Dinosaur success in the triassic: a noncompetitive ecological model.Q. Rev. Biol. 1983; 58: 29-55Crossref Scopus (170) Google Scholar However, this pattern could instead be a response to changes in global climatic distributions through the Triassic to Jurassic transition, especially given the increasing evidence that climate played a key role in constraining Triassic dinosaur distributions.7Tucker M.E. Benton M.J. Triassic environments, climates and reptile evolution.Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982; 40: 361-379https://doi.org/10.1016/0031-0182(82)90034-7Crossref Scopus (89) Google Scholar,9Whiteside J.H. Lindstrรถm S. Irmis R.B. Glasspool I.J. Schaller M.F. Dunlavey M. Nesbitt S.J. Smith N.D. Turner A.H. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.Proc. Natl. Acad. Sci. USA. 2015; 112: 7909-7913https://doi.org/10.1073/pnas.1505252112Crossref PubMed Scopus (61) Google Scholar,10Bernardi M. Gianolla P. Petti F.M. Mietto P. Benton M.J. Dinosaur diversification linked with the Carnian pluvial episode.Nat. Commun. 2018; 9: 1499https://doi.org/10.1038/s41467-018-03996-1Crossref PubMed Scopus (87) Google Scholar,11Lovelace D.M. Hartman S.A. Mathewson P.D. Linzmeier B.J. Porter W.P. Modeling Dragons: using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs.PLoS One. 2020; 15e0223872https://doi.org/10.1371/journal.pone.0223872Crossref Scopus (8) Google Scholar,12Mancuso A.C. Benavente C.A. Irmis R.B. Mundil R. Evidence for the Carnian pluvial episode in Gondwana: new multiproxy climate records and their bearing on early dinosaur diversification.Gondwana Res. 2020; 86: 104-125https://doi.org/10.1016/j.gr.2020.05.009Crossref Scopus (35) Google Scholar,13Mancuso A.C. Irmis R.B. Pedernera T.E. Gaetano L.C. Benavente C.A. Breeden III B.T. Paleoenvironmental and biotic changes in the late triassic of Argentina: testing hypotheses of abiotic forcing at the basin scale.Front. Earth Sci. 2022; 10https://doi.org/10.3389/feart.2022.883788Crossref PubMed Scopus (4) Google Scholar,14Kent D.V. Clemmensen L.B. Northward dispersal of dinosaurs from Gondwana to Greenland at the mid-Norian (215โ€“212 Ma, Late Triassic) dip in atmospheric pCO2.Proc. Natl. Acad. Sci. USA. 2021; 118e2020778118https://doi.org/10.1073/pnas.2020778118Crossref Scopus (16) Google Scholar,15Griffin C.T. Wynd B.M. Munyikwa D. Broderick T.J. Zondo M. Tolan S. Langer M.C. Nesbitt S.J. Taruvinga H.R. Africa\'s oldest dinosaurs reveal early suppression of dinosaur distribution.Nature. 2022; 609: 313-319https://doi.org/10.1038/s41586-022-05133-xCrossref PubMed Scopus (4) Google Scholar,16Olsen P. Sha J. Fang Y. Chang C. Whiteside J.H. Kinney S. Sues H.-D. Kent D. Schaller M. Vajda V. Arctic ice and the ecological rise of the dinosaurs.Sci. Adv. 2022; 8eabo6342https://doi.org/10.1126/sciadv.abo6342Crossref Scopus (5) Google Scholar Here, we test this hypothesis and elucidate how climate influenced early dinosaur distribution by quantitatively examining changes in dinosaur and tetrapod "climatic niche space" across the Triassic-Jurassic boundary. Statistical analyses show that Late Triassic sauropodomorph dinosaurs occupied a more restricted climatic niche space than other tetrapods and dinosaurs, being excluded from the hottest, low-latitude climate zones. A subsequent, earliest Jurassic expansion of sauropodomorph geographic distribution is linked to the expansion of their preferred climatic conditions. Evolutionary model-fitting analyses provide evidence for an important evolutionary shift from cooler to warmer climatic niches during the origin of Sauropoda. These results are consistent with the hypothesis that global abundance of sauropodomorph dinosaurs was facilitated by climatic change and provide support for the key role of climate in the ascendancy of dinosaurs.',
        'The development of technologies to slow climate change has been identified as a global imperative. Nonetheless, such โ€˜greenโ€™ technologies can potentially have negative impacts on biodiversity. We explored how climate change and the mining of lithium for green technologies influence surface water availability, primary productivity and the abundance of three threatened and economically important flamingo species in the โ€˜Lithium Triangleโ€™ of the Chilean Andes. We combined climate and primary productivity data with remotely sensed measures of surface water levels and a 30-year dataset on flamingo abundance using structural equation modelling. We found that, regionally, flamingo abundance fluctuated dramatically from year-to-year in response to variation in surface water levels and primary productivity but did not exhibit any temporal trends. Locally, in the Salar de Atacamaโ€”where lithium mining is focusedโ€”we found that mining was negatively correlated with the abundance of two of the three flamingo species. These results suggest continued increases in lithium mining and declines in surface water could soon have dramatic effects on flamingo abundance across their range. Efforts to slow the expansion of mining and the impacts of climate change are, therefore, urgently needed to benefit local biodiversity and the local human economy that depends on it.',
        'Rivers can abruptly shift pathways in rare events called avulsions, which cause devastating floods. The controls on avulsion locations are poorly understood as a result of sparse data on such features. We analyzed nearly 50 years of satellite imagery and documented 113 avulsions across the globe that indicate three distinct controls on avulsion location. Avulsions on fans coincide with valley-confinement change, whereas avulsions on deltas are primarily clustered within the backwater zone, indicating a control by spatial flow deceleration or acceleration during floods. However, 38% of avulsions on deltas occurred upstream of backwater effects. These events occurred in steep, sediment-rich rivers in tropical and desert environments. Our results indicate that avulsion location on deltas is set by the upstream extent of flood-driven erosion, which is typically limited to the backwater zone but can extend far upstream in steep, sediment-laden rivers. Our findings elucidate how avulsion hazards might respond to land use and climate change.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

Metric Value
map 0.6629 (+0.4483)
mrr@10 0.6554 (+0.4475)
ndcg@10 0.7068 (+0.4669)

Training Details

Training Dataset

Unnamed Dataset

  • Size: 263,476 training samples
  • Columns: query, answer, and label
  • Approximate statistics based on the first 1000 samples:
    query answer label
    type string string int
    details
    • min: 55 characters
    • mean: 178.19 characters
    • max: 593 characters
    • min: 13 characters
    • mean: 1510.36 characters
    • max: 29945 characters
    • 0: ~74.40%
    • 1: ~25.60%
  • Samples:
    query answer label
    The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region. Currently there is renewed interest in harnessing the vast tidal resource to combat the twin challenges of climate change and energy security. However, within the UK no tidal barrage proposals have passed the development stage, this is due to a combination of high cost and environmental concerns. This paper demonstrates how a framework, such as the North West Hydro Resource Model can be applied to tidal barrages, with the Mersey barrage as a case study. The model materialised in order to provide developers with a tool to successfully identify the capacity of hydropower schemes in a specific location. A key feature of the resource model is the understanding that there is no single barrier to the utilisation of small hydropower but several obstacles, which together impede development. Thus, this paper contributes in part to a fully holistic treatment of tidal barrages, recognising that apart from energy generation, other environmental, societal and economic opportunities arise and must b... 1
    The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region. Rainbows contribute to human wellbeing by providing an inspiring connection to nature. Because the rainbow is an atmospheric optical phenomenon that results from the refraction of sunlight by rainwater droplets, changes in precipitation and cloud cover due to anthropogenic climate forcing will alter rainbow distribution. Yet, we lack a basic understanding of the current spatial distribution of rainbows and how climate change might alter this pattern. To assess how climate change might affect rainbow viewing opportunities, we developed a global database of crowd-sourced photographed rainbows, trained an empirical model of rainbow occurrence, and applied this model to present-day climate and three future climate scenarios. Results suggest that the average terrestrial location on Earth currently has 117 ยฑ 71 days per year with conditions suitable for rainbows. By 2100, climate change is likely to generate a 4.0โ€“4.9 % net increase in mean global annual rainbow-days (i.e., days with at leas... 0
    The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region. The ascendancy of dinosaurs to become dominant components of terrestrial ecosystems was a pivotal event in the history of life, yet the drivers of their early evolution and biodiversity are poorly understood.1Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.Biol. Lett. 2008; 4: 733-736https://doi.org/10.1098/rsbl.2008.0441Crossref PubMed Scopus (105) Google Scholar,2Irmis R.B. Evaluating hypotheses for the early diversification of dinosaurs.Earth Environ. Sci. Trans. R. Soc. Edinb. 2010; 101: 397-426https://doi.org/10.1017/S1755691011020068Crossref Scopus (94) Google Scholar,3Benton M.J. Forth J. Langer M.C. Models for the rise of the dinosaurs.Curr. Biol. 2014; 24: R87-R95https://doi.org/10.1016/j.cub.2013.11.063Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar During their early diversification in the Late Triassic, dinosaurs were initially rare and geographically restricted, on... 0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": 6
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • fp16: True
  • dataloader_num_workers: 4
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss climate-science-eval_ndcg@10
0.0001 1 6.4826 -
0.0061 100 6.3516 -
0.0121 200 5.1792 -
0.0182 300 2.9628 -
0.0243 400 1.8946 -
0.0304 500 1.3992 -
0.0364 600 1.4469 -
0.0425 700 1.1841 -
0.0486 800 0.9967 -
0.0547 900 0.9914 -
0.0607 1000 0.7138 0.6113 (+0.3713)
0.0668 1100 0.6944 -
0.0729 1200 0.7374 -
0.0789 1300 0.7249 -
0.0850 1400 0.8826 -
0.0911 1500 0.6886 -
0.0972 1600 0.8185 -
0.1032 1700 0.6946 -
0.1093 1800 0.7231 -
0.1154 1900 0.668 -
0.1214 2000 0.6434 0.6325 (+0.3926)
0.1275 2100 0.7417 -
0.1336 2200 0.6777 -
0.1397 2300 0.779 -
0.1457 2400 0.6876 -
0.1518 2500 0.6619 -
0.1579 2600 0.6626 -
0.1640 2700 0.7394 -
0.1700 2800 0.6654 -
0.1761 2900 0.6026 -
0.1822 3000 0.6838 0.6417 (+0.4018)
0.1882 3100 0.6423 -
0.1943 3200 0.6559 -
0.2004 3300 0.6097 -
0.2065 3400 0.6564 -
0.2125 3500 0.6912 -
0.2186 3600 0.6183 -
0.2247 3700 0.5585 -
0.2308 3800 0.6748 -
0.2368 3900 0.6165 -
0.2429 4000 0.6358 0.6529 (+0.4130)
0.2490 4100 0.6473 -
0.2550 4200 0.6766 -
0.2611 4300 0.6603 -
0.2672 4400 0.5778 -
0.2733 4500 0.6732 -
0.2793 4600 0.605 -
0.2854 4700 0.6943 -
0.2915 4800 0.5776 -
0.2975 4900 0.706 -
0.3036 5000 0.5758 0.6559 (+0.4160)
0.3097 5100 0.6596 -
0.3158 5200 0.6466 -
0.3218 5300 0.6116 -
0.3279 5400 0.5654 -
0.3340 5500 0.643 -
0.3401 5600 0.7281 -
0.3461 5700 0.6295 -
0.3522 5800 0.6555 -
0.3583 5900 0.6671 -
0.3643 6000 0.6647 0.6537 (+0.4138)
0.3704 6100 0.5458 -
0.3765 6200 0.6279 -
0.3826 6300 0.6575 -
0.3886 6400 0.6206 -
0.3947 6500 0.5802 -
0.4008 6600 0.7117 -
0.4068 6700 0.589 -
0.4129 6800 0.6245 -
0.4190 6900 0.5346 -
0.4251 7000 0.7323 0.6559 (+0.4160)
0.4311 7100 0.5407 -
0.4372 7200 0.53 -
0.4433 7300 0.5586 -
0.4494 7400 0.6219 -
0.4554 7500 0.6396 -
0.4615 7600 0.54 -
0.4676 7700 0.6284 -
0.4736 7800 0.6021 -
0.4797 7900 0.6326 -
0.4858 8000 0.6375 0.6691 (+0.4291)
0.4919 8100 0.5402 -
0.4979 8200 0.582 -
0.5040 8300 0.5382 -
0.5101 8400 0.581 -
0.5162 8500 0.6062 -
0.5222 8600 0.5804 -
0.5283 8700 0.6233 -
0.5344 8800 0.5813 -
0.5404 8900 0.5619 -
0.5465 9000 0.5328 0.6694 (+0.4295)
0.5526 9100 0.5371 -
0.5587 9200 0.6534 -
0.5647 9300 0.5395 -
0.5708 9400 0.577 -
0.5769 9500 0.5936 -
0.5829 9600 0.5947 -
0.5890 9700 0.5806 -
0.5951 9800 0.6236 -
0.6012 9900 0.6087 -
0.6072 10000 0.5466 0.6712 (+0.4313)
0.6133 10100 0.6824 -
0.6194 10200 0.5657 -
0.6255 10300 0.5772 -
0.6315 10400 0.6068 -
0.6376 10500 0.4815 -
0.6437 10600 0.527 -
0.6497 10700 0.6041 -
0.6558 10800 0.5542 -
0.6619 10900 0.5846 -
0.6680 11000 0.5559 0.6683 (+0.4284)
0.6740 11100 0.6235 -
0.6801 11200 0.581 -
0.6862 11300 0.5931 -
0.6923 11400 0.532 -
0.6983 11500 0.5832 -
0.7044 11600 0.4815 -
0.7105 11700 0.7507 -
0.7165 11800 0.555 -
0.7226 11900 0.585 -
0.7287 12000 0.6486 0.6711 (+0.4311)
0.7348 12100 0.6077 -
0.7408 12200 0.5116 -
0.7469 12300 0.6163 -
0.7530 12400 0.6205 -
0.7590 12500 0.5086 -
0.7651 12600 0.5544 -
0.7712 12700 0.4743 -
0.7773 12800 0.5854 -
0.7833 12900 0.5681 -
0.7894 13000 0.6179 0.6760 (+0.4360)
0.7955 13100 0.5958 -
0.8016 13200 0.5162 -
0.8076 13300 0.609 -
0.8137 13400 0.4877 -
0.8198 13500 0.6157 -
0.8258 13600 0.5638 -
0.8319 13700 0.5049 -
0.8380 13800 0.7226 -
0.8441 13900 0.515 -
0.8501 14000 0.5564 0.6822 (+0.4423)
0.8562 14100 0.5618 -
0.8623 14200 0.5448 -
0.8684 14300 0.5693 -
0.8744 14400 0.6417 -
0.8805 14500 0.5609 -
0.8866 14600 0.6033 -
0.8926 14700 0.6355 -
0.8987 14800 0.5322 -
0.9048 14900 0.519 -
0.9109 15000 0.5662 0.6764 (+0.4365)
0.9169 15100 0.593 -
0.9230 15200 0.6004 -
0.9291 15300 0.5673 -
0.9351 15400 0.5142 -
0.9412 15500 0.5859 -
0.9473 15600 0.6421 -
0.9534 15700 0.4822 -
0.9594 15800 0.6082 -
0.9655 15900 0.5373 -
0.9716 16000 0.6102 0.6729 (+0.4330)
0.9777 16100 0.5109 -
0.9837 16200 0.6156 -
0.9898 16300 0.6408 -
0.9959 16400 0.5031 -
1.0019 16500 0.4652 -
1.0080 16600 0.3893 -
1.0141 16700 0.6276 -
1.0202 16800 0.5526 -
1.0262 16900 0.551 -
1.0323 17000 0.5066 0.6832 (+0.4432)
1.0384 17100 0.5074 -
1.0444 17200 0.48 -
1.0505 17300 0.6073 -
1.0566 17400 0.485 -
1.0627 17500 0.4927 -
1.0687 17600 0.597 -
1.0748 17700 0.4376 -
1.0809 17800 0.4935 -
1.0870 17900 0.5702 -
1.0930 18000 0.4482 0.6825 (+0.4426)
1.0991 18100 0.5183 -
1.1052 18200 0.4593 -
1.1112 18300 0.4775 -
1.1173 18400 0.5831 -
1.1234 18500 0.4942 -
1.1295 18600 0.5684 -
1.1355 18700 0.5214 -
1.1416 18800 0.5292 -
1.1477 18900 0.5163 -
1.1538 19000 0.5305 0.6868 (+0.4469)
1.1598 19100 0.4507 -
1.1659 19200 0.4699 -
1.1720 19300 0.4532 -
1.1780 19400 0.4853 -
1.1841 19500 0.5169 -
1.1902 19600 0.5927 -
1.1963 19700 0.5777 -
1.2023 19800 0.5041 -
1.2084 19900 0.5309 -
1.2145 20000 0.4426 0.6809 (+0.4410)
1.2205 20100 0.54 -
1.2266 20200 0.5692 -
1.2327 20300 0.5004 -
1.2388 20400 0.5044 -
1.2448 20500 0.4574 -
1.2509 20600 0.6132 -
1.2570 20700 0.4477 -
1.2631 20800 0.4805 -
1.2691 20900 0.6127 -
1.2752 21000 0.4349 0.6914 (+0.4515)
1.2813 21100 0.6595 -
1.2873 21200 0.5234 -
1.2934 21300 0.4525 -
1.2995 21400 0.3841 -
1.3056 21500 0.5215 -
1.3116 21600 0.6187 -
1.3177 21700 0.4491 -
1.3238 21800 0.629 -
1.3299 21900 0.6247 -
1.3359 22000 0.461 0.6858 (+0.4459)
1.3420 22100 0.5351 -
1.3481 22200 0.4602 -
1.3541 22300 0.4915 -
1.3602 22400 0.5056 -
1.3663 22500 0.4976 -
1.3724 22600 0.4983 -
1.3784 22700 0.6245 -
1.3845 22800 0.5009 -
1.3906 22900 0.4268 -
1.3966 23000 0.5552 0.6860 (+0.4461)
1.4027 23100 0.5136 -
1.4088 23200 0.5308 -
1.4149 23300 0.4796 -
1.4209 23400 0.5315 -
1.4270 23500 0.4997 -
1.4331 23600 0.457 -
1.4392 23700 0.5553 -
1.4452 23800 0.5262 -
1.4513 23900 0.3976 -
1.4574 24000 0.4542 0.6929 (+0.4530)
1.4634 24100 0.5882 -
1.4695 24200 0.4332 -
1.4756 24300 0.4206 -
1.4817 24400 0.5621 -
1.4877 24500 0.5347 -
1.4938 24600 0.3999 -
1.4999 24700 0.4689 -
1.5060 24800 0.4581 -
1.5120 24900 0.547 -
1.5181 25000 0.476 0.6919 (+0.4520)
1.5242 25100 0.4884 -
1.5302 25200 0.4404 -
1.5363 25300 0.4938 -
1.5424 25400 0.5362 -
1.5485 25500 0.5063 -
1.5545 25600 0.5653 -
1.5606 25700 0.4717 -
1.5667 25800 0.4901 -
1.5727 25900 0.5102 -
1.5788 26000 0.5277 0.6878 (+0.4479)
1.5849 26100 0.496 -
1.5910 26200 0.553 -
1.5970 26300 0.5712 -
1.6031 26400 0.5246 -
1.6092 26500 0.5805 -
1.6153 26600 0.5651 -
1.6213 26700 0.6139 -
1.6274 26800 0.4898 -
1.6335 26900 0.4464 -
1.6395 27000 0.479 0.6926 (+0.4527)
1.6456 27100 0.5201 -
1.6517 27200 0.3981 -
1.6578 27300 0.5541 -
1.6638 27400 0.5546 -
1.6699 27500 0.4874 -
1.6760 27600 0.5388 -
1.6821 27700 0.4642 -
1.6881 27800 0.5017 -
1.6942 27900 0.4948 -
1.7003 28000 0.5065 0.6970 (+0.4571)
1.7063 28100 0.5501 -
1.7124 28200 0.3532 -
1.7185 28300 0.5828 -
1.7246 28400 0.4659 -
1.7306 28500 0.5192 -
1.7367 28600 0.4208 -
1.7428 28700 0.5869 -
1.7488 28800 0.5452 -
1.7549 28900 0.5222 -
1.7610 29000 0.5656 0.6987 (+0.4587)
1.7671 29100 0.5486 -
1.7731 29200 0.4706 -
1.7792 29300 0.5038 -
1.7853 29400 0.4439 -
1.7914 29500 0.5442 -
1.7974 29600 0.4777 -
1.8035 29700 0.5777 -
1.8096 29800 0.4981 -
1.8156 29900 0.4757 -
1.8217 30000 0.498 0.6971 (+0.4572)
1.8278 30100 0.5251 -
1.8339 30200 0.4121 -
1.8399 30300 0.5471 -
1.8460 30400 0.4772 -
1.8521 30500 0.4986 -
1.8581 30600 0.5598 -
1.8642 30700 0.4857 -
1.8703 30800 0.3509 -
1.8764 30900 0.5719 -
1.8824 31000 0.5183 0.7000 (+0.4600)
1.8885 31100 0.3952 -
1.8946 31200 0.5221 -
1.9007 31300 0.4777 -
1.9067 31400 0.4371 -
1.9128 31500 0.5726 -
1.9189 31600 0.5451 -
1.9249 31700 0.5352 -
1.9310 31800 0.4411 -
1.9371 31900 0.4589 -
1.9432 32000 0.4623 0.6922 (+0.4523)
1.9492 32100 0.4656 -
1.9553 32200 0.4595 -
1.9614 32300 0.5686 -
1.9675 32400 0.3952 -
1.9735 32500 0.3992 -
1.9796 32600 0.4397 -
1.9857 32700 0.5823 -
1.9917 32800 0.3741 -
1.9978 32900 0.5914 -
2.0039 33000 0.3066 0.7022 (+0.4623)
2.0100 33100 0.3759 -
2.0160 33200 0.4164 -
2.0221 33300 0.3911 -
2.0282 33400 0.4269 -
2.0342 33500 0.397 -
2.0403 33600 0.378 -
2.0464 33700 0.5975 -
2.0525 33800 0.4485 -
2.0585 33900 0.3636 -
2.0646 34000 0.3081 0.7009 (+0.4610)
2.0707 34100 0.4204 -
2.0768 34200 0.4379 -
2.0828 34300 0.4619 -
2.0889 34400 0.3795 -
2.0950 34500 0.4356 -
2.1010 34600 0.4095 -
2.1071 34700 0.454 -
2.1132 34800 0.4248 -
2.1193 34900 0.3987 -
2.1253 35000 0.4074 0.6997 (+0.4598)
2.1314 35100 0.4302 -
2.1375 35200 0.4459 -
2.1436 35300 0.4961 -
2.1496 35400 0.4565 -
2.1557 35500 0.438 -
2.1618 35600 0.4256 -
2.1678 35700 0.4943 -
2.1739 35800 0.4378 -
2.1800 35900 0.4059 -
2.1861 36000 0.4706 0.7022 (+0.4623)
2.1921 36100 0.4848 -
2.1982 36200 0.5028 -
2.2043 36300 0.4847 -
2.2103 36400 0.3933 -
2.2164 36500 0.4298 -
2.2225 36600 0.5339 -
2.2286 36700 0.3225 -
2.2346 36800 0.3906 -
2.2407 36900 0.3294 -
2.2468 37000 0.4511 0.6971 (+0.4572)
2.2529 37100 0.3817 -
2.2589 37200 0.4822 -
2.2650 37300 0.3975 -
2.2711 37400 0.4482 -
2.2771 37500 0.3826 -
2.2832 37600 0.5013 -
2.2893 37700 0.3956 -
2.2954 37800 0.438 -
2.3014 37900 0.5253 -
2.3075 38000 0.3576 0.7000 (+0.4601)
2.3136 38100 0.4061 -
2.3197 38200 0.456 -
2.3257 38300 0.5257 -
2.3318 38400 0.5533 -
2.3379 38500 0.4898 -
2.3439 38600 0.3854 -
2.3500 38700 0.4025 -
2.3561 38800 0.5514 -
2.3622 38900 0.441 -
2.3682 39000 0.4563 0.7003 (+0.4603)
2.3743 39100 0.436 -
2.3804 39200 0.4162 -
2.3864 39300 0.5437 -
2.3925 39400 0.4212 -
2.3986 39500 0.3891 -
2.4047 39600 0.3907 -
2.4107 39700 0.4422 -
2.4168 39800 0.4499 -
2.4229 39900 0.4889 -
2.4290 40000 0.4213 0.7018 (+0.4619)
2.4350 40100 0.4689 -
2.4411 40200 0.4344 -
2.4472 40300 0.4739 -
2.4532 40400 0.4998 -
2.4593 40500 0.4831 -
2.4654 40600 0.4539 -
2.4715 40700 0.4089 -
2.4775 40800 0.3621 -
2.4836 40900 0.4391 -
2.4897 41000 0.4505 0.7044 (+0.4645)
2.4957 41100 0.5392 -
2.5018 41200 0.3973 -
2.5079 41300 0.4245 -
2.5140 41400 0.3979 -
2.5200 41500 0.4979 -
2.5261 41600 0.4346 -
2.5322 41700 0.5294 -
2.5383 41800 0.2816 -
2.5443 41900 0.4917 -
2.5504 42000 0.5214 0.7068 (+0.4669)
2.5565 42100 0.4735 -
2.5625 42200 0.3989 -
2.5686 42300 0.397 -
2.5747 42400 0.4202 -
2.5808 42500 0.3813 -
2.5868 42600 0.3742 -
2.5929 42700 0.3593 -
2.5990 42800 0.4132 -
2.6051 42900 0.4089 -
2.6111 43000 0.555 0.7057 (+0.4658)
2.6172 43100 0.3949 -
2.6233 43200 0.3216 -
2.6293 43300 0.4265 -
2.6354 43400 0.4529 -
2.6415 43500 0.5047 -
2.6476 43600 0.5522 -
2.6536 43700 0.4635 -
2.6597 43800 0.3012 -
2.6658 43900 0.3738 -
2.6718 44000 0.4507 0.7040 (+0.4641)
2.6779 44100 0.4097 -
2.6840 44200 0.3425 -
2.6901 44300 0.3934 -
2.6961 44400 0.507 -
2.7022 44500 0.4207 -
2.7083 44600 0.3949 -
2.7144 44700 0.4073 -
2.7204 44800 0.547 -
2.7265 44900 0.5141 -
2.7326 45000 0.3943 0.7045 (+0.4646)
2.7386 45100 0.4786 -
2.7447 45200 0.4747 -
2.7508 45300 0.4123 -
2.7569 45400 0.5173 -
2.7629 45500 0.3601 -
2.7690 45600 0.4944 -
2.7751 45700 0.3822 -
2.7812 45800 0.5818 -
2.7872 45900 0.3503 -
2.7933 46000 0.4496 0.7039 (+0.4640)
2.7994 46100 0.4341 -
2.8054 46200 0.5068 -
2.8115 46300 0.4157 -
2.8176 46400 0.5226 -
2.8237 46500 0.4521 -
2.8297 46600 0.3809 -
2.8358 46700 0.4364 -
2.8419 46800 0.3719 -
2.8479 46900 0.4458 -
2.8540 47000 0.3888 0.7036 (+0.4636)
2.8601 47100 0.3331 -
2.8662 47200 0.4155 -
2.8722 47300 0.4436 -
2.8783 47400 0.4629 -
2.8844 47500 0.4362 -
2.8905 47600 0.551 -
2.8965 47700 0.4062 -
2.9026 47800 0.4636 -
2.9087 47900 0.2969 -
2.9147 48000 0.4171 0.7035 (+0.4636)
2.9208 48100 0.499 -
2.9269 48200 0.4536 -
2.9330 48300 0.4865 -
2.9390 48400 0.4162 -
2.9451 48500 0.4401 -
2.9512 48600 0.4846 -
2.9573 48700 0.3991 -
2.9633 48800 0.3574 -
2.9694 48900 0.4327 -
2.9755 49000 0.3185 0.7040 (+0.4641)
2.9815 49100 0.4635 -
2.9876 49200 0.4235 -
2.9937 49300 0.4913 -
2.9998 49400 0.4842 -
-1 -1 - 0.7068 (+0.4669)
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
3
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for nicolauduran45/climate-science-reranker

Evaluation results