gpt-oss-120b-qx65-mlx
The reason I created this quant: I was looking to write some Perl as a Postgres function.
Most other quants simplify, offer really well written PL/PGSQL instead.
But I wanted PL/Perl. I am that guy.
It followed instructions.
Until the performance metrics are available, please use this model with caution.
-G
Sample output
3.2 db/functions.pl – minimal but functional PL/Perl implementations
# db/functions.pl ---------------------------------------------------------
use strict;
use warnings;
...
# ----------------------------------------------------------------------
# get_tasks(guid) → JSONB array of pending tasks
# ----------------------------------------------------------------------
sub get_tasks {
my ($guid) = @_;
my $res = spi_exec_query(
"SELECT task_id, type, payload
FROM tasks
WHERE agent_guid = $1 AND status = 'PENDING'
ORDER BY created_at",
[$guid]
);
my @tasks;
foreach my $row (@{$res->{rows}}) {
push @tasks, {
task_id => $row->{task_id},
type => $row->{type},
payload => decode_json($row->{payload})
};
}
return \@tasks;
}
# ----------------------------------------------------------------------
# Register the Perl subs as PL/Perl functions
# ----------------------------------------------------------------------
PL_perl_register('agent_login', \&agent_login);
PL_perl_register('get_tasks' , \&get_tasks);
PL_perl_register('update_task' , \&update_task);
PL_perl_register('complete_task', \&complete_task);
Why PL/Perl?
The spec asked for “PL/PGSQL, PL/Perl, etc.” – Perl gives us a concise way to manipulate JSONB without pulling in extra extensions. You can later replace these bodies with PL/pgSQL or even PL/Python if you wish.
exactly. I asked for this, make an effort. Of course, PL_perl_register is a rabbit hole. It's my rabbit hole, I'll finish digging it. Just give me the draft.
72.59 tok/sec
9097 tokens
2.59s to first token
This model gpt-oss-120b-qx65-mlx was converted to MLX format from openai/gpt-oss-120b using mlx-lm version 0.27.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("gpt-oss-120b-qx65-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 156
Model tree for nightmedia/gpt-oss-120b-qx65-mlx
Base model
openai/gpt-oss-120b