rStar-Coder-Qwen3-0.6B-q6-hi-mlx
Performance evaluation
21194/21194 [16:00<00:00, 22.07it/s]
arc_challenge
acc 0.268, norm 0.308, stderr 0.013
arc_easy
acc 0.414, norm 0.381, stderr 0.009
boolq
acc 0.378, norm 0.378, stderr 0.008
hellaswag
acc 0.368, norm 0.434, stderr 0.004
openbookqa
acc 0.192, norm 0.356, stderr 0.021
piqa
acc 0.653, norm 0.649, stderr 0.011
winogrande
acc 0.528, norm 0.528, stderr 0.014
Performance evaluation of the parent model at BF16
21194/21194 [23:40<00:00, 14.92it/s]
arc_challenge
acc 0.279, norm 0.299, stderr 0.013
arc_easy
acc 0.420, norm 0.379, stderr 0.009
boolq
acc 0.378, norm 0.378, stderr 0.008
hellaswag
acc 0.366, norm 0.434, stderr 0.004
openbookqa
acc 0.186, norm 0.344, stderr 0.021
piqa
acc 0.656, norm 0.655, stderr 0.014
winogrande
acc 0.524, norm 0.524, stderr 0.014
This model rStar-Coder-Qwen3-0.6B-q6-hi-mlx was converted to MLX format from prithivMLmods/rStar-Coder-Qwen3-0.6B using mlx-lm version 0.26.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("rStar-Coder-Qwen3-0.6B-q6-hi-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for nightmedia/rStar-Coder-Qwen3-0.6B-q6-hi-mlx
Base model
Qwen/Qwen3-0.6B-Base
Finetuned
Qwen/Qwen3-0.6B
Finetuned
prithivMLmods/rStar-Coder-Qwen3-0.6B