Edit model card

MultiModal MultiLingual (3ML)

This model is 4bit quantized of glm-4v-9b Model (Less than 9G).

It excels in document, image, chart questioning answering and delivers superior performance over GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.

Some part of the original Model changed and It can excute on free version of google colab.

Try it: Open In Colab

![Github Source]

Note: For optimal performance with document and image understanding, please use English or Chinese. The model can still handle chat in any supported language.

About GLM-4V-9B

GLM-4V-9B is a multimodal language model with visual understanding capabilities. The evaluation results of its related classic tasks are as follows:

MMBench-EN-Test MMBench-CN-Test SEEDBench_IMG MMStar MMMU MME HallusionBench AI2D OCRBench
英文综合 中文综合 综合能力 综合能力 学科综合 感知推理 幻觉性 图表理解 文字识别
GPT-4o, 20240513 83.4 82.1 77.1 63.9 69.2 2310.3 55 84.6 736
GPT-4v, 20240409 81 80.2 73 56 61.7 2070.2 43.9 78.6 656
GPT-4v, 20231106 77 74.4 72.3 49.7 53.8 1771.5 46.5 75.9 516
InternVL-Chat-V1.5 82.3 80.7 75.2 57.1 46.8 2189.6 47.4 80.6 720
LlaVA-Next-Yi-34B 81.1 79 75.7 51.6 48.8 2050.2 34.8 78.9 574
Step-1V 80.7 79.9 70.3 50 49.9 2206.4 48.4 79.2 625
MiniCPM-Llama3-V2.5 77.6 73.8 72.3 51.8 45.8 2024.6 42.4 78.4 725
Qwen-VL-Max 77.6 75.7 72.7 49.5 52 2281.7 41.2 75.7 684
GeminiProVision 73.6 74.3 70.7 38.6 49 2148.9 45.7 72.9 680
Claude-3V Opus 63.3 59.2 64 45.7 54.9 1586.8 37.8 70.6 694
GLM-4v-9B 81.1 79.4 76.8 58.7 47.2 2163.8 46.6 81.1 786
This repository is the model repository of 4bit quantized of GLM-4V-9B model, supporting 8K context length.

Quick Start

Use colab model or this python script.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

device = "cuda"

modelPath="nikravan/glm-4vq"
tokenizer = AutoTokenizer.from_pretrained(modelPath, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    modelPath,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    device_map="auto"
)



query ='explain all the details in this picture'
image = Image.open("a3.png").convert('RGB')
#image=""
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
                                       add_generation_prompt=True, tokenize=True, return_tensors="pt",
                                       return_dict=True)  # chat with image mode

inputs = inputs.to(device)

gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0]))
Downloads last month
1,648
Safetensors
Model size
7.49B params
Tensor type
F32
·
BF16
·
U8
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Spaces using nikravan/glm-4vq 5