ninninz's picture
ninninz/whisper-large-v3-ivn-v1
e1b8cc1 verified
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-large-v3-ivn-v1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 70.56790998493842

whisper-large-v3-ivn-v1

This model is a fine-tuned version of openai/whisper-large-v3 on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8302
  • Wer: 70.5679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0274 14.29 1000 1.4520 78.4974
0.0033 28.57 2000 1.6206 73.4296
0.0004 42.86 3000 1.7704 70.3553
0.0002 57.14 4000 1.8302 70.5679

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1