metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.81
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6818
- Accuracy: 0.81
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9467 | 1.0 | 113 | 1.8450 | 0.56 |
1.1922 | 2.0 | 226 | 1.2446 | 0.63 |
0.9442 | 3.0 | 339 | 0.9962 | 0.72 |
0.6935 | 4.0 | 452 | 0.8803 | 0.73 |
0.5568 | 5.0 | 565 | 0.8272 | 0.76 |
0.4095 | 6.0 | 678 | 0.6811 | 0.81 |
0.2956 | 7.0 | 791 | 0.6967 | 0.79 |
0.1496 | 8.0 | 904 | 0.6948 | 0.8 |
0.1861 | 9.0 | 1017 | 0.6542 | 0.8 |
0.1181 | 10.0 | 1130 | 0.6818 | 0.81 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1