File size: 22,844 Bytes
314ad38 ed35572 314ad38 ed35572 314ad38 ed35572 1f5a21f ed35572 c050d43 ed35572 c050d43 ed35572 eeb99d3 ed35572 7bb49d3 ed35572 738d65b ed35572 5828264 ed35572 edfde49 ed35572 8185a7d ed35572 314ad38 ed35572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
---
license: apache-2.0
tags:
- multimodal
- vision-language
- video understanding
- spatial reasoning
- visuospatial cognition
- llava
- qwen
- llava-video
datasets:
- nkkbr/ViCA-322K
- nkkbr/ViCA-thinking-2.68k
language:
- en
library_name: transformers
pipeline_tag: video-text-to-text
model_name: ViCA-7B
base_model: lmms-lab/LLaVA-Video-7B-Qwen2
model-index:
- name: ViCA-7B
results:
- task:
type: visual-question-answering
dataset:
name: VSI-Bench
type: vsi-bench
metrics:
- type: score
value: 60.56
name: Average
verified: false
- type: MRA
value: 68.81
name: Object Count
- type: MRA
value: 57.01
name: Absolute Distance
- type: MRA
value: 79.17
name: Object Size
- type: MRA
value: 75.14
name: Room Size
- type: accuracy
value: 58.45
name: Relative Distance
- type: accuracy
value: 42.56
name: Relative Direction
- type: accuracy
value: 34.54
name: Route Plan
- type: accuracy
value: 68.77
name: Appearance Order
---
<div align="center">
<img src="assets/banner.png" alt="ViCA Banner"/>
</div>
# ViCA-7B: Visuospatial Cognitive Assistant
> You may also be interested in our other project, **ViCA2**. Please refer to the following links:
[](https://github.com/nkkbr/ViCA)
[](https://huggingface.co/nkkbr/ViCA2)
## Overview
**ViCA-7B** is a vision-language model specifically fine-tuned for *visuospatial reasoning* in indoor video environments. Built upon the LLaVA-Video-7B-Qwen2 architecture, it is trained using our newly proposed **ViCA-322K dataset**, which emphasizes both structured spatial annotations and complex instruction-based reasoning tasks.
ViCA-7B achieves **state-of-the-art performance** on [VSI-Bench](https://github.com/vision-x-nyu/thinking-in-space), outperforming both proprietary models like **GPT-4o** and **Gemini-1.5 Pro**, as well as larger open-source baselines.
> **ViCA-7B sets a new standard for open-source multimodal spatial reasoning on indoor videos, making it a strong candidate for embodied AI and robotics use cases.**
<p align="center">
<img src="assets/vsi-bench-comparison.svg" width="700"/>
</p>
<p align="center"><b>Figure 1:</b> Performance comparison of ViCA-7B and other models on <a href="https://github.com/vision-x-nyu/thinking-in-space">VSI-Bench</a>.</p>
## Model Architecture and Training Strategy
ViCA-7B is built upon the [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT) framework, using **Qwen2-7B** as the language backbone and **SigLIP** as the visual encoder.
**Key Training Features**
- **Fixed-Length Visual Tokenization**
Each video is uniformly sampled into 64 frames, and each frame is encoded into 210 visual tokens, resulting in a total of **13,440 visual tokens per example**. This fixed-length design ensures consistent memory usage and stable optimization across batches.
- **Multimodal Alignment via Lightweight Projector**
A simple MLP-based projector maps visual embeddings into the language embedding space, enabling effective fusion between video content and textual prompts during both training and inference.
- **Efficient Distributed Training with DeepSpeed**
Training is conducted using **DeepSpeed ZeRO-3 Offload** on **8ร NVIDIA H100 80GB GPUs**, with full parameter and optimizer state partitioning across devices. This setup supports large batch sizes and minimizes GPU memory overhead.
- **Mixed-Precision Computation (fp16)**
We adopt **mixed-precision training (fp16)** to accelerate computation and reduce memory usage, without compromising accuracy. This is combined with ZeRO-3 partitioning to further enhance training scalability.
The training was conducted over **55 hours**, covering both base and complex spatial reasoning subsets.
## Training Dynamics
<p align="center">
<img src="assets/training_record/vica-train_loss_with_ema.svg" width="100%"/>
<img src="assets/training_record/vica-train_learning_rate.svg" width="100%"/>
<img src="assets/training_record/vica-train_grad_norm.svg" width="100%"/>
</p>
<p align="center">
<b>Figure 2:</b> Training loss, learning rate schedule, and gradient norm curves during ViCA-7B fine-tuning.
These curves illustrate a stable optimization process and smooth convergence under the DeepSpeed ZeRO-3 setup.
</p>
## Dataset
ViCA-7B is fine-tuned on two complementary datasets:
- [**ViCA-322K**](https://huggingface.co/datasets/nkkbr/ViCA-322K):
A large-scale dataset covering both **base spatial reasoning tasks** (e.g., object distance, size, count, appearance order) and **complex spatial reasoning tasks** involving natural language questions and scene understanding. This dataset forms the core of the model's spatial reasoning capabilities.
- [**ViCA-thinking-2.68k**](https://huggingface.co/datasets/nkkbr/ViCA-thinking-2.68k):
A focused dataset used for instruction tuning to enhance the model's ability to **generate step-by-step reasoning traces** before outputting final answers. This supports more interpretable and cognitively-aligned response generation.
For details, please refer to the individual dataset pages linked above.
## Evaluation: VSI-BENCH Benchmark
<p align="center">
<img src="assets/vsi-bench-table.png" width="800"/>
</p>
<p align="center"><b>Figure 3:</b> Quantitative comparison of ViCA-7B and baseline models on <a href="https://github.com/vision-x-nyu/thinking-in-space">VSI-Bench</a>. ViCA-7B achieves the best overall performance across both numerical and multiple-choice tasks.</p>
### Effect of CSR Data
| Configuration | Avg Score |
|----------------------|-----------|
| Base-only (281K) | 55.35 |
| Full with CSR (322K) | **60.56** |
> CSR(Complex Spatial Reasoning) boosts generalization and **accelerates learning**, with notable performance jumps at intermediate checkpoints (e.g., +2.02 at 50โ55%).
### Data Scale vs. Performance
Performance improves significantly between **5% โ 60%** of data usage. After **80%**, improvements plateau, indicating dataset is well-matched to model capacity.
<p align="center">
<img src="assets/data-scale-csr-effect.svg" width="750"/>
</p>
<p align="center"><b>Figure 4:</b> Performance of ViCA-7B under varying training data sizes (from 5% to 100%). The full dataset (including Complex Spatial Reasoning, CSR) consistently outperforms the base-only configuration. Notably, the CSR-enhanced model shows a +2.02 score jump between 50% and 55%, and a final performance gain of +4.75 at full scale. Performance plateaus beyond 80%, indicating the dataset is well-aligned with the model capacity.</p>
## Intermediate Checkpoints and Evaluation Outputs
To support detailed analysis and reproducibility, we provide two sets of intermediate checkpoints saved at every **5% increment** of the training data. These models are trained for a single epoch and are useful for understanding how performance evolves as training progresses.
We also release the corresponding **raw evaluation outputs** (e.g., `.json` prediction files) for each checkpoint.
The evaluation script used to produce these outputs is available in our [GitHub repository](https://github.com/nkkbr/ViCA).
### Full Dataset (ViCA-322K: Base + CSR)
This series corresponds to the full training set, including both base spatial reasoning and complex spatial reasoning (CSR):
| Data Usage | Checkpoint | Data Usage | Checkpoint |
| ---------- | --------------------------------------------------------- | ---------- | ----------------------------------------------------------- |
| 5% | [`nkkbr/ViCA-5p`](https://huggingface.co/nkkbr/ViCA-5p) | 55% | [`nkkbr/ViCA-55p`](https://huggingface.co/nkkbr/ViCA-55p) |
| 10% | [`nkkbr/ViCA-10p`](https://huggingface.co/nkkbr/ViCA-10p) | 60% | [`nkkbr/ViCA-60p`](https://huggingface.co/nkkbr/ViCA-60p) |
| 15% | [`nkkbr/ViCA-15p`](https://huggingface.co/nkkbr/ViCA-15p) | 65% | [`nkkbr/ViCA-65p`](https://huggingface.co/nkkbr/ViCA-65p) |
| 20% | [`nkkbr/ViCA-20p`](https://huggingface.co/nkkbr/ViCA-20p) | 70% | [`nkkbr/ViCA-70p`](https://huggingface.co/nkkbr/ViCA-70p) |
| 25% | [`nkkbr/ViCA-25p`](https://huggingface.co/nkkbr/ViCA-25p) | 75% | [`nkkbr/ViCA-75p`](https://huggingface.co/nkkbr/ViCA-75p) |
| 30% | [`nkkbr/ViCA-30p`](https://huggingface.co/nkkbr/ViCA-30p) | 80% | [`nkkbr/ViCA-80p`](https://huggingface.co/nkkbr/ViCA-80p) |
| 35% | [`nkkbr/ViCA-35p`](https://huggingface.co/nkkbr/ViCA-35p) | 85% | [`nkkbr/ViCA-85p`](https://huggingface.co/nkkbr/ViCA-85p) |
| 40% | [`nkkbr/ViCA-40p`](https://huggingface.co/nkkbr/ViCA-40p) | 90% | [`nkkbr/ViCA-90p`](https://huggingface.co/nkkbr/ViCA-90p) |
| 45% | [`nkkbr/ViCA-45p`](https://huggingface.co/nkkbr/ViCA-45p) | 95% | [`nkkbr/ViCA-95p`](https://huggingface.co/nkkbr/ViCA-95p) |
| 50% | [`nkkbr/ViCA-50p`](https://huggingface.co/nkkbr/ViCA-50p) | 100% (This repo) | [`nkkbr/ViCA`](https://huggingface.co/nkkbr/ViCA) |
Raw evaluation outputs are available [here](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_all_data/).
### Base-only Subset (ViCA-322K: Base)
This series is trained **only** on the base spatial reasoning subset of ViCA-322K, without any CSR examples:
| Data Usage | Checkpoint | Data Usage | Checkpoint |
| ---------- | ------------------------------------------------------------------- | ---------- | --------------------------------------------------------------------- |
| 5% | [`nkkbr/ViCA-base-5p`](https://huggingface.co/nkkbr/ViCA-base-5p) | 55% | [`nkkbr/ViCA-base-55p`](https://huggingface.co/nkkbr/ViCA-base-55p) |
| 10% | [`nkkbr/ViCA-base-10p`](https://huggingface.co/nkkbr/ViCA-base-10p) | 60% | [`nkkbr/ViCA-base-60p`](https://huggingface.co/nkkbr/ViCA-base-60p) |
| 15% | [`nkkbr/ViCA-base-15p`](https://huggingface.co/nkkbr/ViCA-base-15p) | 65% | [`nkkbr/ViCA-base-65p`](https://huggingface.co/nkkbr/ViCA-base-65p) |
| 20% | [`nkkbr/ViCA-base-20p`](https://huggingface.co/nkkbr/ViCA-base-20p) | 70% | [`nkkbr/ViCA-base-70p`](https://huggingface.co/nkkbr/ViCA-base-70p) |
| 25% | [`nkkbr/ViCA-base-25p`](https://huggingface.co/nkkbr/ViCA-base-25p) | 75% | [`nkkbr/ViCA-base-75p`](https://huggingface.co/nkkbr/ViCA-base-75p) |
| 30% | [`nkkbr/ViCA-base-30p`](https://huggingface.co/nkkbr/ViCA-base-30p) | 80% | [`nkkbr/ViCA-base-80p`](https://huggingface.co/nkkbr/ViCA-base-80p) |
| 35% | [`nkkbr/ViCA-base-35p`](https://huggingface.co/nkkbr/ViCA-base-35p) | 85% | [`nkkbr/ViCA-base-85p`](https://huggingface.co/nkkbr/ViCA-base-85p) |
| 40% | [`nkkbr/ViCA-base-40p`](https://huggingface.co/nkkbr/ViCA-base-40p) | 90% | [`nkkbr/ViCA-base-90p`](https://huggingface.co/nkkbr/ViCA-base-90p) |
| 45% | [`nkkbr/ViCA-base-45p`](https://huggingface.co/nkkbr/ViCA-base-45p) | 95% | [`nkkbr/ViCA-base-95p`](https://huggingface.co/nkkbr/ViCA-base-95p) |
| 50% | [`nkkbr/ViCA-base-50p`](https://huggingface.co/nkkbr/ViCA-base-50p) | 100% | [`nkkbr/ViCA-base`](https://huggingface.co/nkkbr/ViCA-base) |
Raw evaluation outputs are available [here](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_only_base/).
## Source-wise Checkpoints
While the full **ViCA-322K** dataset was curated by us, the underlying videos and associated metadata are sourced from three distinct indoor video datasets:
* **[ARKitScenes](https://machinelearning.apple.com/research/arkitscenes)**
* **[ScanNet](http://www.scan-net.org)**
* **[ScanNet++](https://kaldir.vc.in.tum.de/scannetpp/)**
To better understand how each source contributes to model performance, we fine-tuned ViCA-7B on subsets of ViCA-322K that exclusively use data from each source. For each subset, we provide checkpoints trained with **10% increments** of the available data, from 10% to 100%.
Corresponding **raw evaluation outputs** (e.g., `.json` predictions) are also provided for all checkpoints.
### ARKitScenes-Only Checkpoints
| Data Usage | Checkpoint | Data Usage | Checkpoint |
| ---------- | --------------------------------------------------------------------------------- | ---------- | ----------------------------------------------------------------------------------- |
| 10% | [`nkkbr/ViCA-ARKitScenes-10p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-10p) | 60% | [`nkkbr/ViCA-ARKitScenes-60p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-60p) |
| 20% | [`nkkbr/ViCA-ARKitScenes-20p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-20p) | 70% | [`nkkbr/ViCA-ARKitScenes-70p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-70p) |
| 30% | [`nkkbr/ViCA-ARKitScenes-30p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-30p) | 80% | [`nkkbr/ViCA-ARKitScenes-80p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-80p) |
| 40% | [`nkkbr/ViCA-ARKitScenes-40p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-40p) | 90% | [`nkkbr/ViCA-ARKitScenes-90p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-90p) |
| 50% | [`nkkbr/ViCA-ARKitScenes-50p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-50p) | 100% | [`nkkbr/ViCA-ARKitScenes`](https://huggingface.co/nkkbr/ViCA-ARKitScenes) |
๐ Raw evaluation outputs: [ARKitScenes results](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_arkitscenes/)
### ScanNet++-Only Checkpoints
| Data Usage | Checkpoint | Data Usage | Checkpoint |
| ---------- | ----------------------------------------------------------------------------- | ---------- | ------------------------------------------------------------------------------- |
| 10% | [`nkkbr/ViCA-ScanNetPP-10p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-10p) | 60% | [`nkkbr/ViCA-ScanNetPP-60p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-60p) |
| 20% | [`nkkbr/ViCA-ScanNetPP-20p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-20p) | 70% | [`nkkbr/ViCA-ScanNetPP-70p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-70p) |
| 30% | [`nkkbr/ViCA-ScanNetPP-30p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-30p) | 80% | [`nkkbr/ViCA-ScanNetPP-80p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-80p) |
| 40% | [`nkkbr/ViCA-ScanNetPP-40p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-40p) | 90% | [`nkkbr/ViCA-ScanNetPP-90p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-90p) |
| 50% | [`nkkbr/ViCA-ScanNetPP-50p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-50p) | 100% | [`nkkbr/ViCA-ScanNetPP`](https://huggingface.co/nkkbr/ViCA-ScanNetPP) |
๐ Raw evaluation outputs: [ScanNet++ results](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_scannetpp/)
### ScanNet-Only Checkpoints
| Data Usage | Checkpoint | Data Usage | Checkpoint |
| ---------- | ------------------------------------------------------------------------- | ---------- | --------------------------------------------------------------------------- |
| 10% | [`nkkbr/ViCA-ScanNet-10p`](https://huggingface.co/nkkbr/ViCA-ScanNet-10p) | 60% | [`nkkbr/ViCA-ScanNet-60p`](https://huggingface.co/nkkbr/ViCA-ScanNet-60p) |
| 20% | [`nkkbr/ViCA-ScanNet-20p`](https://huggingface.co/nkkbr/ViCA-ScanNet-20p) | 70% | [`nkkbr/ViCA-ScanNet-70p`](https://huggingface.co/nkkbr/ViCA-ScanNet-70p) |
| 30% | [`nkkbr/ViCA-ScanNet-30p`](https://huggingface.co/nkkbr/ViCA-ScanNet-30p) | 80% | [`nkkbr/ViCA-ScanNet-80p`](https://huggingface.co/nkkbr/ViCA-ScanNet-80p) |
| 40% | [`nkkbr/ViCA-ScanNet-40p`](https://huggingface.co/nkkbr/ViCA-ScanNet-40p) | 90% | [`nkkbr/ViCA-ScanNet-90p`](https://huggingface.co/nkkbr/ViCA-ScanNet-90p) |
| 50% | [`nkkbr/ViCA-ScanNet-50p`](https://huggingface.co/nkkbr/ViCA-ScanNet-50p) | 100% | [`nkkbr/ViCA-ScanNet`](https://huggingface.co/nkkbr/ViCA-ScanNet) |
๐ Raw evaluation outputs: [ScanNet results](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_scannet/)
## Additional Probing
### Time Instructions
Including 64 frame timestamps in the prompt slightly **hurts** performance, suggesting that models fail to leverage temporal alignment and are negatively impacted by instruction verbosity.
<p align="center">
<img src="assets/table3.png" width="400"/>
</p>
<p align="center"><b>Figure 5:</b> Adding explicit frame timestamps (64 values) degrades model performance on VSI-Bench, indicating an inability to exploit temporal alignment and sensitivity to prompt length.</p>
---
### More Frames
Increasing input from 64 to 128 frames doubles the number of visual tokens (13,440 โ 26,880) but yields **no performance gain**, highlighting overfitting to fixed token length and architectural inflexibility.
<p align="center">
<img src="assets/table2.png" width="400"/>
</p>
<p align="center"><b>Figure 6:</b> Comparison between 64-frame and 128-frame inputs. Despite doubling the visual token count, performance remains unchanged, indicating overfitting to fixed-length input and limited adaptability to variable-length sequences.</p>
## Potential Applications
ViCA-7B supports a broad range of spatially grounded multimodal applications:
- Indoor navigation assistants
- Robotics planning and spatial querying
- Smart room arrangement and AR layout analysis
- Scene understanding for embodied AI agents
## Known Limitations
- Limited temporal reasoning: Time instructions not effectively utilized
- Frame scaling issues: Models expect fixed input lengths
- No depth/point cloud: Only RGB video input supported
- Zero-shot generalization is good, but not task-agnostic
## Download
You can download the model weights to your local environment (optional).
```python
from huggingface_hub import snapshot_download
save_dir = "./ViCA"
repo_id = "nkkbr/ViCA"
cache_dir = save_dir + "/cache"
snapshot_download(cache_dir=cache_dir,
local_dir=save_dir,
repo_id=repo_id,
local_dir_use_symlinks=False,
resume_download=True,
)
```
## Inference
*Here is a runnable example using ViCA-7B on a VSI-Bench question.*
```python
# This inference script is adapted from:
# https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
import json
from tqdm import tqdm
import os
warnings.filterwarnings("ignore")
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
frame_time = [i/fps for i in frame_idx]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
spare_frames = vr.get_batch(frame_idx).asnumpy()
# import pdb;pdb.set_trace()
return spare_frames,frame_time,video_time
pretrained = 'nkkbr/ViCA'
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
from datasets import load_dataset
vsi_bench = load_dataset("nyu-visionx/VSI-Bench")
vsi_bench = vsi_bench['test']
data_curr = vsi_bench[1000]
video_path = f"[VIDEO PATH]"
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
video = [video]
conv_template = "qwen_1_5"
# time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video."
time_instruciton = ""
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruciton}\n\n"
question += f"These are frames of a video.\n\n"
question += f"Question: {data_curr['question']}\n"
if data_curr['options'] is not None:
question += '\n'.join(data_curr['options']) + "\n"
question += f"Answer with the optionโs letter from the given choices directly.\n"
else:
question += f"Please answer the question using a single word or phrase.\n"
print(f"Prompt:\n{question}")
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=1024,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(repr(text_outputs))
```
---
|