smolchess-v2
This model is a fine-tuned version of HuggingFaceTB/SmolLM2-135M on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8569
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use grokadamw with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 0.25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4864 | 0.0025 | 4 | 1.5472 |
1.3163 | 0.0050 | 8 | 1.2616 |
1.0354 | 0.0075 | 12 | 1.1857 |
1.2466 | 0.0100 | 16 | 1.1447 |
1.1801 | 0.0125 | 20 | 1.1176 |
1.208 | 0.0150 | 24 | 1.1092 |
1.0723 | 0.0176 | 28 | 1.0780 |
1.1895 | 0.0201 | 32 | 1.0760 |
1.1358 | 0.0226 | 36 | 1.0562 |
1.0817 | 0.0251 | 40 | 1.0554 |
0.9674 | 0.0276 | 44 | 1.0419 |
0.9832 | 0.0301 | 48 | 1.0245 |
1.0241 | 0.0326 | 52 | 1.0178 |
0.9553 | 0.0351 | 56 | 1.0115 |
1.0715 | 0.0376 | 60 | 1.0027 |
1.1014 | 0.0401 | 64 | 0.9965 |
1.0304 | 0.0426 | 68 | 0.9954 |
0.9906 | 0.0451 | 72 | 0.9879 |
0.9631 | 0.0476 | 76 | 0.9769 |
0.986 | 0.0502 | 80 | 0.9720 |
1.0233 | 0.0527 | 84 | 0.9675 |
0.9323 | 0.0552 | 88 | 0.9612 |
0.9303 | 0.0577 | 92 | 0.9569 |
1.0258 | 0.0602 | 96 | 0.9520 |
0.9946 | 0.0627 | 100 | 0.9527 |
0.9568 | 0.0652 | 104 | 0.9425 |
0.9674 | 0.0677 | 108 | 0.9435 |
0.9627 | 0.0702 | 112 | 0.9378 |
0.9755 | 0.0727 | 116 | 0.9338 |
0.8511 | 0.0752 | 120 | 0.9306 |
0.989 | 0.0777 | 124 | 0.9292 |
0.9635 | 0.0803 | 128 | 0.9272 |
0.9412 | 0.0828 | 132 | 0.9263 |
0.8605 | 0.0853 | 136 | 0.9228 |
0.8503 | 0.0878 | 140 | 0.9206 |
0.8976 | 0.0903 | 144 | 0.9155 |
0.9029 | 0.0928 | 148 | 0.9143 |
0.9335 | 0.0953 | 152 | 0.9103 |
0.944 | 0.0978 | 156 | 0.9073 |
0.8948 | 0.1003 | 160 | 0.9058 |
0.8921 | 0.1028 | 164 | 0.9032 |
0.9948 | 0.1053 | 168 | 0.9028 |
0.8968 | 0.1078 | 172 | 0.9003 |
0.8908 | 0.1103 | 176 | 0.8982 |
0.9119 | 0.1129 | 180 | 0.8979 |
0.842 | 0.1154 | 184 | 0.8942 |
0.7497 | 0.1179 | 188 | 0.8930 |
0.9294 | 0.1204 | 192 | 0.8922 |
0.8184 | 0.1229 | 196 | 0.8891 |
0.941 | 0.1254 | 200 | 0.8883 |
0.8884 | 0.1279 | 204 | 0.8851 |
0.8975 | 0.1304 | 208 | 0.8851 |
0.9205 | 0.1329 | 212 | 0.8847 |
0.8663 | 0.1354 | 216 | 0.8815 |
0.8455 | 0.1379 | 220 | 0.8812 |
0.921 | 0.1404 | 224 | 0.8794 |
0.9493 | 0.1429 | 228 | 0.8784 |
0.8949 | 0.1455 | 232 | 0.8792 |
0.8886 | 0.1480 | 236 | 0.8773 |
0.8808 | 0.1505 | 240 | 0.8760 |
0.8768 | 0.1530 | 244 | 0.8750 |
0.9354 | 0.1555 | 248 | 0.8727 |
0.8512 | 0.1580 | 252 | 0.8721 |
0.8355 | 0.1605 | 256 | 0.8717 |
0.7923 | 0.1630 | 260 | 0.8699 |
0.9027 | 0.1655 | 264 | 0.8691 |
0.8264 | 0.1680 | 268 | 0.8681 |
0.9199 | 0.1705 | 272 | 0.8683 |
0.8792 | 0.1730 | 276 | 0.8666 |
0.9347 | 0.1755 | 280 | 0.8664 |
0.8988 | 0.1781 | 284 | 0.8652 |
0.889 | 0.1806 | 288 | 0.8646 |
0.917 | 0.1831 | 292 | 0.8633 |
0.9206 | 0.1856 | 296 | 0.8628 |
0.9127 | 0.1881 | 300 | 0.8629 |
0.6946 | 0.1906 | 304 | 0.8618 |
0.9499 | 0.1931 | 308 | 0.8612 |
0.8798 | 0.1956 | 312 | 0.8610 |
0.8857 | 0.1981 | 316 | 0.8610 |
0.9356 | 0.2006 | 320 | 0.8604 |
0.8134 | 0.2031 | 324 | 0.8597 |
0.9214 | 0.2056 | 328 | 0.8592 |
0.8907 | 0.2082 | 332 | 0.8590 |
0.8309 | 0.2107 | 336 | 0.8588 |
0.8386 | 0.2132 | 340 | 0.8584 |
0.8001 | 0.2157 | 344 | 0.8583 |
0.8452 | 0.2182 | 348 | 0.8580 |
0.7587 | 0.2207 | 352 | 0.8578 |
0.8155 | 0.2232 | 356 | 0.8576 |
0.7179 | 0.2257 | 360 | 0.8575 |
0.8231 | 0.2282 | 364 | 0.8573 |
0.8984 | 0.2307 | 368 | 0.8572 |
0.8501 | 0.2332 | 372 | 0.8571 |
0.8512 | 0.2357 | 376 | 0.8570 |
0.8554 | 0.2382 | 380 | 0.8570 |
0.9082 | 0.2408 | 384 | 0.8570 |
0.8617 | 0.2433 | 388 | 0.8569 |
0.8845 | 0.2458 | 392 | 0.8569 |
0.9595 | 0.2483 | 396 | 0.8569 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.