Granite-4.0-h-small

Model Overview

  • Model Architecture: GraniteMoeHybridForCausalLM
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: FP8
    • Activation quantization: FP8
  • Release Date:
  • Version: 1.0
  • Model Developers:: Red Hat

Quantized version of ibm-granite/granite-4.0-h-small.

Model Optimizations

This model was obtained by quantizing the weights and activations of ibm-granite/granite-4.0-h-small to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.

Deployment

Use with vLLM

  1. Initialize vLLM server:
vllm serve RedHatAI/granite-4.0-h-small-FP8-block --tensor_parallel_size 4
  1. Send requests to the server:
from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

model = "RedHatAI/granite-4.0-h-small-FP8-block"

messages = [
    {"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]


outputs = client.chat.completions.create(
    model=model,
    messages=messages,
)

generated_text = outputs.choices[0].message.content
print(generated_text)

Evaluation

The model was evaluated on the OpenLLM leaderboard task, using lm-evaluation-harness. vLLM was used for all evaluations.

Evaluation details

Openllm V1

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/granite-4.0-h-small-FP8-block",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks openllm \
  --write_out \
  --batch_size auto \
  --show_config

Openllm V2

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/granite-4.0-h-small-FP8-block",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks leaderboard \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --write_out \
  --batch_size auto \
  --show_config

Coding Benchmarks

evalplus.evaluate --model "RedHatAI/granite-4.0-h-small-FP8-block" \
                  --dataset "humaneval" \
                  --backend vllm \
                  --tp 4 \
                  --greedy

evalplus.evaluate --model "RedHatAI/granite-4.0-h-small-FP8-block" \
                --dataset "mbpp" \
                --backend vllm \
                --tp 4 \
                --greedy

Accuracy

Category Metric ibm-granite/granite-4.0-h-small RedHatAI/granite-4.0-h-small-FP8-block Recovery (%)
OpenLLM V1 ARC-Challenge (Acc-Norm, 25-shot) abc ijk xyz
GSM8K (Strict-Match, 5-shot) abc ijk xyz
HellaSwag (Acc-Norm, 10-shot) abc ijk xyz
MMLU (Acc, 5-shot) abc ijk xyz
TruthfulQA (MC2, 0-shot) abc ijk xyz
Winogrande (Acc, 5-shot) abc ijk xyz
Average Score abc ijk xyz
OpenLLM V2 IFEval (Inst Level Strict Acc, 0-shot) abc ijk xyz
BBH (Acc-Norm, 3-shot) abc ijk xyz
Math-Hard (Exact-Match, 4-shot) abc ijk xyz
GPQA (Acc-Norm, 0-shot) abc ijk xyz
MUSR (Acc-Norm, 0-shot) abc ijk xyz
MMLU-Pro (Acc, 5-shot) abc ijk xyz
Average Score abc ijk xyz
Coding HumanEval pass@1 86.60 ijk xyz
HumanEval+ pass@1 81.10 ijk xyz
MBPP pass@1 82.00 ijk xyz
MBPP+ pass@1 69.80 ijk xyz
Downloads last month
8
Safetensors
Model size
33B params
Tensor type
F32
BF16
F8_E4M3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for nm-testing/granite-4.0-h-small-FP8-block

Quantized
(28)
this model