layoutlmv3-xfund
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6625
- Precision: 0.7711
- Recall: 0.8476
- F1: 0.8075
- Accuracy: 0.8030
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.7142 | 1.0 | 522 | 0.7296 | 0.6225 | 0.7066 | 0.6619 | 0.7212 |
0.5881 | 2.0 | 1044 | 0.6032 | 0.6841 | 0.8100 | 0.7417 | 0.7688 |
0.4179 | 3.0 | 1566 | 0.5904 | 0.7204 | 0.8222 | 0.7679 | 0.7858 |
0.3507 | 4.0 | 2088 | 0.6088 | 0.7600 | 0.8458 | 0.8006 | 0.7979 |
0.2618 | 5.0 | 2610 | 0.6625 | 0.7711 | 0.8476 | 0.8075 | 0.8030 |
Inference
# Install the Python wrapper
!pip install pytesseract pillow
# Install the Tesseract engine on a Debian/Ubuntu-based system (like Colab)
!sudo apt install tesseract-ocr
import torch
from transformers import AutoProcessor, AutoModelForTokenClassification
from PIL import Image, ImageDraw, ImageFont
import pytesseract
import numpy as np
import os # For setting environment variable
# --- CRITICAL FOR DEBUGGING: Set this at the very top ---
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# --- ADD THE NORMALIZATION FUNCTION ---
def normalize_bbox(bbox, width, height):
return [
int(1000 * min(max(bbox[0] / width, 0), 1)),
int(1000 * min(max(bbox[1] / height, 0), 1)),
int(1000 * min(max(bbox[2] / width, 0), 1)),
int(1000 * min(max(bbox[3] / height, 0), 1))
]
# --- 1. Load your Fine-Tuned Model and Processor ---
MODEL_ID = "nnul/layoutlmv3-xfund"
print("Loading processor...")
processor = AutoProcessor.from_pretrained(MODEL_ID)
print("Loading model...")
model = AutoModelForTokenClassification.from_pretrained(MODEL_ID)
print("Moving model to device...")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
print("Model moved successfully.")
# --- 2. Load the Image ---
image_path = "your_image.png"
image = Image.open(image_path).convert("RGB")
width, height = image.size
# --- 3. Perform OCR and NORMALIZE Bounding Boxes ---
print("Performing OCR...")
data = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
words = []
unnormalized_boxes = []
normalized_boxes = []
for i in range(len(data['text'])):
if int(data['conf'][i]) > 30 and data['text'][i].strip() != '':
word = data['text'][i]
x, y, w, h = data['left'][i], data['top'][i], data['width'][i], data['height'][i]
actual_box = [x, y, x + w, y + h]
unnormalized_boxes.append(actual_box)
normalized_box = normalize_bbox(actual_box, width, height)
normalized_boxes.append(normalized_box)
words.append(word)
print(f"OCR found {len(words)} words.")
# --- 4. Manually Preprocess and Predict ---
print("Preprocessing inputs...")
encoding = processor(
image,
words,
boxes=normalized_boxes,
return_tensors="pt",
truncation=True
)
print("Moving inputs to device...")
for k, v in encoding.items():
encoding[k] = v.to(device)
print("Running inference...")
with torch.no_grad():
outputs = model(**encoding)
logits = outputs.logits
predictions_indices = logits.argmax(-1).squeeze().tolist()
word_ids = encoding.word_ids()
previous_word_id = None
word_predictions = []
for idx, word_id in enumerate(word_ids):
if word_id is not None and word_id != previous_word_id:
label_id = predictions_indices[idx]
word_predictions.append(model.config.id2label[label_id])
previous_word_id = word_id
def visualize_predictions(image, words, boxes, predictions):
label2color = {
"B-QUESTION": "blue", "I-QUESTION": "blue",
"B-ANSWER": "green", "I-ANSWER": "green",
"B-HEADER": "orange", "I-HEADER": "orange",
"O": "gray"
}
draw_image = image.copy()
draw = ImageDraw.Draw(draw_image)
try:
font = ImageFont.truetype("arial.ttf", 12)
except IOError:
font = ImageFont.load_default()
for word, box, label in zip(words, boxes, predictions):
color = label2color.get(label, 'red')
draw.rectangle(box, outline=color, width=2)
entity_type = label.split('-')[1] if '-' in label else 'OTHER'
if entity_type != 'OTHER':
draw.text((box[0], box[1] - 10), entity_type, fill=color, font=font)
return draw_image
print("Visualizing results...")
visualized_image = visualize_predictions(image, words, unnormalized_boxes, word_predictions)
display(visualized_image)
visualized_image.save("result_visualization_manual.png")
print("Saved visualization to result_visualization_manual.png")
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 34
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nnul/layoutlmv3-xfund
Base model
microsoft/layoutlmv3-base