nocturneFlow's picture
End of training
b804a41 verified
metadata
library_name: transformers
language:
  - kk
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small KK - Kazakh Augmented
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: kk
          split: test
          args: 'config: kk, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 46.55716993051169

Whisper Small KK - Kazakh Augmented

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6225
  • Wer: 46.5572

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1921 1.5152 100 0.5052 47.7890
0.0705 3.0303 200 0.5226 49.1156
0.0077 4.5455 300 0.5783 47.1573
0.0035 6.0606 400 0.5758 46.0834
0.0008 7.5758 500 0.6011 46.4940
0.0006 9.0909 600 0.6126 46.3677
0.0003 10.6061 700 0.6159 44.4409
0.0002 12.1212 800 0.6194 44.3146
0.0002 13.6364 900 0.6216 46.5256
0.0002 15.1515 1000 0.6225 46.5572

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu118
  • Datasets 3.3.2
  • Tokenizers 0.21.0