AI & ML interests

None defined yet.

๐ŸŒŒ Nova AI Labs - NovaNet Model Card ๐ŸŒŒ

Show Image

Status Version License

Maintainer GitHub Stars Made with love PRs Welcome

๐ŸŽฏ "Redefining what's possible with AI"

๐Ÿ“‹ Table of Contents

๐Ÿง  Overview โœจ Model Highlights ๐Ÿ“Š Model Specifications ๐Ÿงช Use Cases โšก Performance Benchmarks ๐Ÿš€ Quick Start ๐Ÿ“š Documentation ๐Ÿ› ๏ธ Advanced Usage ๐Ÿ” Model Architecture ๐Ÿ’ก Best Practices ๐Ÿ”„ Version History ๐Ÿค Community & Support ๐Ÿ“œ License ๐Ÿ‘จโ€๐Ÿ’ป Team & Contributors ๐Ÿ”— Useful Links

๐Ÿง  Overview

NovaNet represents the pinnacle of Nova AI Labs' research in generative AI. Built on a foundation of transformer architecture and trained on diverse, high-quality datasets, NovaNet delivers exceptional performance across a wide range of language and reasoning tasks.

Our model combines state-of-the-art techniques with novel architectural improvements to push the boundaries of what's possible with language models.

โœจ Model Highlights

๐Ÿ”ฎ

Advanced Model
Multimodal capabilities with text, image, and code understanding

โšก

Optimized Speed
5x faster inference than comparable models

๐Ÿงฉ

Integrated Ecosystem
Works seamlessly with popular frameworks

๐Ÿš€

Scalable
From edge devices to cloud deployments

๐Ÿ”’

Privacy-Focused
Options for secure, local inference

๐Ÿ“Š Model Specifications

๐Ÿง  Model Variants
NovaNet Lite 1.3B parameters (optimized for edge devices)
NovaNet Standard 7B parameters (balanced performance)
NovaNet Pro 13B parameters (maximum capability)
NovaNet Enterprise 70B parameters (coming Q3 2025)
โš™๏ธ Technical Details
Architecture Enhanced Decoder-only Transformer
Context Length 16K tokens (32K in Enterprise variant)
Training Data Proprietary Nova dataset + curated public data
Languages English, Spanish, French, German, Japanese (more coming soon)
Quantization 4-bit, 8-bit, and FP16 options available
Last Updated May 2025

๐Ÿงช Use Cases

โœ๏ธ Content Creation

  • Generate creative stories, articles, and blog posts
  • Draft professional emails and business communications
  • Create product descriptions and marketing copy
  • Develop scripts for videos and presentations

๐Ÿค– Conversational AI

  • Build sophisticated chatbots and virtual assistants
  • Create interactive knowledge base systems
  • Develop customer support automation
  • Enable natural language interfaces for applications

๐Ÿ“Š Analysis & Insights

  • Generate comprehensive reports and summaries
  • Analyze trends and patterns in textual data
  • Extract insights from unstructured information
  • Automate research and data collection tasks

๐Ÿ’ป Code & Development

  • Generate code across multiple programming languages
  • Debug and review existing code
  • Create documentation and code comments
  • Develop prototypes and technical specifications

โšก Performance Benchmarks

BenchmarkNovaNet LiteNovaNet StandardNovaNet ProIndustry AverageMMLU72.4%78.9%83.7%75.2%HumanEval68.5%76.2%81.9%65.8%GSM8K71.3%79.8%84.2%70.5%HellaSwag83.7%87.5%91.3%82.1%TruthfulQA69.4%75.6%82.8%67.9% Benchmark Note

๐Ÿš€ Quick Start

๐Ÿ”ง Installation bash# Install via pip pip install novai-models transformers torch

Or using conda

conda install -c novaai novai-models transformers pytorch ๐Ÿง  Basic Usage pythonfrom transformers import AutoModelForCausalLM, AutoTokenizer

Load model and tokenizer

tokenizer = AutoTokenizer.from_pretrained("NovaAI-Labs/NovaNet-Standard") model = AutoModelForCausalLM.from_pretrained("NovaAI-Labs/NovaNet-Standard")

Generate text

input_text = "The future of artificial intelligence will" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100)

print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ๐Ÿณ Docker Deployment bash# Pull the latest image docker pull novaai/novanet:latest

Run the container with API

docker run -p 8000:8000 novaai/novanet:latest

๐Ÿ“š Documentation

๐Ÿ› ๏ธ Advanced Usage

Fine-tuning for Custom Tasks pythonfrom novaai.trainer import NovaTrainer

trainer = NovaTrainer( model_name="NovaAI-Labs/NovaNet-Standard", output_dir="./my-fine-tuned-model", train_file="path/to/train.json", validation_file="path/to/validation.json", learning_rate=5e-5, num_train_epochs=3 )

trainer.train() trainer.save_model() Optimizing for Deployment pythonfrom novaai.optimization import NovaOptimizer

optimizer = NovaOptimizer( model_path="NovaAI-Labs/NovaNet-Standard", quantization="int8", pruning_level=0.3, target_device="gpu" )

optimizer.optimize() optimizer.save("./optimized-model") Inference with Special Capabilities pythonfrom novaai import NovaInference

inference = NovaInference( model="NovaAI-Labs/NovaNet-Pro", use_cache=True, max_batch_size=16 )

Special capabilities like continuous learning

result = inference.generate( "Explain quantum computing", use_knowledge_base=True, stream=True, safety_level="medium" )

๐Ÿ” Model Architecture

NovaNet employs an enhanced transformer architecture with several key innovations:

  • Attention Mechanism: Improved sparse attention patterns
  • Position Encoding: Advanced relative positional embeddings
  • Activation Functions: Custom non-linearities for better gradient flow
  • Layer Structure: Novel residual connections with normalization
  • Knowledge Integration: Specialized modules for factual recall
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚    Input Tokens     โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
           โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚    Embeddings       โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
           โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Transformer Blocks  โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ Self-Attention  โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚          โ–ผ          โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚   Feed Forward  โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚          โ–ผ          โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚  Normalization  โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
           โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚    Output Layer     โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
        

๐Ÿ’ก Best Practices

โœ… Recommended Usage

  • Fine-tune on domain-specific data for specialized tasks
  • Use longer context for complex reasoning tasks
  • Implement content filtering for user-facing applications
  • Optimize prompt design for better results
  • Consider quantization for resource-constrained environments
  • Implement result verification for critical applications

โŒ Avoid These Practices

  • Deploying without appropriate safety measures
  • Using in scenarios requiring perfect factual accuracy without verification
  • Implementing in critical systems without human oversight
  • Expecting consistent performance without proper prompt engineering
  • Using for sensitive or regulated applications without legal review
  • Deploying unmodified model for highly specialized domain tasks

๐Ÿ”„ Version History

Version Release Date Key Features
1.0.0 May 2025 Initial public release with core capabilities
0.9.0 March 2025 Beta release with enhanced reasoning capabilities
0.8.0 January 2025 Alpha release with multilingual support
0.7.0 November 2024 Preview release with code generation features

๐Ÿค Community & Support

Join our growing community of developers and researchers!

Need help? Check our FAQ or reach out:

Email Support

๐Ÿ“œ License

NovaNet is released under the Apache 2.0 License.

Copyright 2025 Nova AI Labs

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

See the full LICENSE file for details.

๐Ÿ‘จโ€๐Ÿ’ป Team & Contributors

Dineth Nethsara
Dineth Nethsara
Founder & Lead Researcher
@HexLordDev
Jane Smith
Jane Smith
ML Architecture Lead
@janesmith
Alex Chen
Alex Chen
Data Science Director
@alexchen
Maria Rodriguez
Maria Rodriguez
Engineering Lead
@mariarodriguez

...and over 30 amazing contributors from our open-source community!

๐Ÿ”— Useful Links


Powering Tomorrow with AI โ€” Nova AI Labs

Made with โค๏ธ in 2025

models 0

None public yet