NovaMind Leaderboard
NovaMind โ An elite AI leaderboard showcasing the brightest
None defined yet.
๐ฏ "Redefining what's possible with AI"
๐ง Overview โจ Model Highlights ๐ Model Specifications ๐งช Use Cases โก Performance Benchmarks ๐ Quick Start ๐ Documentation ๐ ๏ธ Advanced Usage ๐ Model Architecture ๐ก Best Practices ๐ Version History ๐ค Community & Support ๐ License ๐จโ๐ป Team & Contributors ๐ Useful Links
๐ง Overview
NovaNet represents the pinnacle of Nova AI Labs' research in generative AI. Built on a foundation of transformer architecture and trained on diverse, high-quality datasets, NovaNet delivers exceptional performance across a wide range of language and reasoning tasks. Our model combines state-of-the-art techniques with novel architectural improvements to push the boundaries of what's possible with language models. |
![]() |
โจ Model Highlights
๐ฎAdvanced ModelMultimodal capabilities with text, image, and code understanding |
โกOptimized Speed5x faster inference than comparable models |
๐งฉIntegrated EcosystemWorks seamlessly with popular frameworks |
๐ScalableFrom edge devices to cloud deployments |
๐Privacy-FocusedOptions for secure, local inference |
๐ Model Specifications
๐ง Model Variants | |
---|---|
NovaNet Lite | 1.3B parameters (optimized for edge devices) |
NovaNet Standard | 7B parameters (balanced performance) |
NovaNet Pro | 13B parameters (maximum capability) |
NovaNet Enterprise | 70B parameters (coming Q3 2025) |
โ๏ธ Technical Details | |
Architecture | Enhanced Decoder-only Transformer |
Context Length | 16K tokens (32K in Enterprise variant) |
Training Data | Proprietary Nova dataset + curated public data |
Languages | English, Spanish, French, German, Japanese (more coming soon) |
Quantization | 4-bit, 8-bit, and FP16 options available |
Last Updated | May 2025 |
๐งช Use Cases
โก Performance Benchmarks
๐ Quick Start
conda install -c novaai novai-models transformers pytorch ๐ง Basic Usage pythonfrom transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("NovaAI-Labs/NovaNet-Standard") model = AutoModelForCausalLM.from_pretrained("NovaAI-Labs/NovaNet-Standard")
input_text = "The future of artificial intelligence will" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ๐ณ Docker Deployment bash# Pull the latest image docker pull novaai/novanet:latest
docker run -p 8000:8000 novaai/novanet:latest
๐ Documentation
Comprehensive documentation is available at our official docs site:
Key Documentation Sections:
๐ Getting Started | ๐ API Reference | ๐จโ๐ซ Tutorials |
๐ง Advanced Usage | ๐ง Model Details | ๐ก Examples |
๐ ๏ธ Advanced Usage
trainer = NovaTrainer( model_name="NovaAI-Labs/NovaNet-Standard", output_dir="./my-fine-tuned-model", train_file="path/to/train.json", validation_file="path/to/validation.json", learning_rate=5e-5, num_train_epochs=3 )
trainer.train() trainer.save_model() Optimizing for Deployment pythonfrom novaai.optimization import NovaOptimizer
optimizer = NovaOptimizer( model_path="NovaAI-Labs/NovaNet-Standard", quantization="int8", pruning_level=0.3, target_device="gpu" )
optimizer.optimize() optimizer.save("./optimized-model") Inference with Special Capabilities pythonfrom novaai import NovaInference
inference = NovaInference( model="NovaAI-Labs/NovaNet-Pro", use_cache=True, max_batch_size=16 )
result = inference.generate( "Explain quantum computing", use_knowledge_base=True, stream=True, safety_level="medium" )
๐ Model Architecture
NovaNet employs an enhanced transformer architecture with several key innovations:
|
โโโโโโโโโโโโโโโโโโโโโโโ โ Input Tokens โ โโโโโโโโโโโโฌโโโโโโโโโโโ โผ โโโโโโโโโโโโโโโโโโโโโโโ โ Embeddings โ โโโโโโโโโโโโฌโโโโโโโโโโโ โผ โโโโโโโโโโโโโโโโโโโโโโโ โ Transformer Blocks โ โ โโโโโโโโโโโโโโโโโโโ โ โ โ Self-Attention โ โ โ โโโโโโโโโโฌโโโโโโโโโ โ โ โผ โ โ โโโโโโโโโโโโโโโโโโโ โ โ โ Feed Forward โ โ โ โโโโโโโโโโฌโโโโโโโโโ โ โ โผ โ โ โโโโโโโโโโโโโโโโโโโ โ โ โ Normalization โ โ โ โโโโโโโโโโฌโโโโโโโโโ โ โโโโโโโโโโโโฌโโโโโโโโโโโ โผ โโโโโโโโโโโโโโโโโโโโโโโ โ Output Layer โ โโโโโโโโโโโโโโโโโโโโโโโ |
๐ก Best Practices
๐ Version History
Version | Release Date | Key Features |
---|---|---|
1.0.0 | May 2025 | Initial public release with core capabilities |
0.9.0 | March 2025 | Beta release with enhanced reasoning capabilities |
0.8.0 | January 2025 | Alpha release with multilingual support |
0.7.0 | November 2024 | Preview release with code generation features |
๐ค Community & Support
๐ License
NovaNet is released under the Apache 2.0 License.
Copyright 2025 Nova AI LabsLicensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
See the full LICENSE file for details.
๐จโ๐ป Team & Contributors
![]() Dineth Nethsara Founder & Lead Researcher @HexLordDev |
![]() Jane Smith ML Architecture Lead @janesmith |
![]() Alex Chen Data Science Director @alexchen |
![]() Maria Rodriguez Engineering Lead @mariarodriguez |
...and over 30 amazing contributors from our open-source community!
๐ Useful Links
Powering Tomorrow with AI โ Nova AI Labs
Made with โค๏ธ in 2025