CHIMERA: Prediction models
Collection
https://huggingface.co/papers/2505.20779
•
4 items
•
Updated
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"Background: Patients find it difficult to use dexterous prosthetic hands without a suitable control system, highlighting a need for improved grasp performance and ease of operation. Existing methods may not adequately address the challenges faced by users, particularly those with inferior myoelectric signals, in effectively controlling prosthetic devices.\nContribution: Combine 'myoelectric signal' and ",
'a unified framework for collaborative decoding between large and small language models (Large Language Models and small language models)',
'joint biomedical entity linking and event extraction',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
query
, answer
, and label
query | answer | label | |
---|---|---|---|
type | string | string | int |
details |
|
|
|
query | answer | label |
---|---|---|
Background: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks. |
a multilayer perceptron |
1 |
Background: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks. |
synthetic occlusion augmentation during training |
0 |
Background: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks. |
robustness of deep learning methods |
0 |
ContrastiveLoss
with these parameters:{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
per_device_train_batch_size
: 64learning_rate
: 1.9218937402834593e-05num_train_epochs
: 2warmup_ratio
: 0.08278167292320517bf16
: Truebatch_sampler
: no_duplicatesoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1.9218937402834593e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.08278167292320517warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalEpoch | Step | Training Loss |
---|---|---|
0.0082 | 100 | 0.0104 |
0.0163 | 200 | 0.0068 |
0.0245 | 300 | 0.005 |
0.0326 | 400 | 0.0041 |
0.0408 | 500 | 0.0054 |
0.0489 | 600 | 0.004 |
0.0571 | 700 | 0.0037 |
0.0652 | 800 | 0.0037 |
0.0734 | 900 | 0.0049 |
0.0815 | 1000 | 0.0038 |
0.0897 | 1100 | 0.004 |
0.0979 | 1200 | 0.0037 |
0.1060 | 1300 | 0.004 |
0.1142 | 1400 | 0.0049 |
0.1223 | 1500 | 0.0038 |
0.1305 | 1600 | 0.0036 |
0.1386 | 1700 | 0.0037 |
0.1468 | 1800 | 0.0045 |
0.1549 | 1900 | 0.0038 |
0.1631 | 2000 | 0.0034 |
0.1712 | 2100 | 0.0034 |
0.1794 | 2200 | 0.0035 |
0.1876 | 2300 | 0.0045 |
0.1957 | 2400 | 0.0036 |
0.2039 | 2500 | 0.0036 |
0.2120 | 2600 | 0.0033 |
0.2202 | 2700 | 0.004 |
0.2283 | 2800 | 0.0036 |
0.2365 | 2900 | 0.0033 |
0.2446 | 3000 | 0.0033 |
0.2528 | 3100 | 0.0037 |
0.2609 | 3200 | 0.0038 |
0.2691 | 3300 | 0.0033 |
0.2773 | 3400 | 0.0034 |
0.2854 | 3500 | 0.0033 |
0.2936 | 3600 | 0.0041 |
0.3017 | 3700 | 0.0033 |
0.3099 | 3800 | 0.0033 |
0.3180 | 3900 | 0.0032 |
0.3262 | 4000 | 0.004 |
0.3343 | 4100 | 0.0035 |
0.3425 | 4200 | 0.0031 |
0.3506 | 4300 | 0.0033 |
0.3588 | 4400 | 0.0033 |
0.3670 | 4500 | 0.0039 |
0.3751 | 4600 | 0.0032 |
0.3833 | 4700 | 0.0034 |
0.3914 | 4800 | 0.0031 |
0.3996 | 4900 | 0.004 |
0.4077 | 5000 | 0.0032 |
0.4159 | 5100 | 0.0031 |
0.4240 | 5200 | 0.0031 |
0.4322 | 5300 | 0.0032 |
0.4403 | 5400 | 0.0039 |
0.4485 | 5500 | 0.0031 |
0.4567 | 5600 | 0.003 |
0.4648 | 5700 | 0.0032 |
0.4730 | 5800 | 0.0038 |
0.4811 | 5900 | 0.0033 |
0.4893 | 6000 | 0.0031 |
0.4974 | 6100 | 0.0032 |
0.5056 | 6200 | 0.0033 |
0.5137 | 6300 | 0.0033 |
0.5219 | 6400 | 0.0032 |
0.5300 | 6500 | 0.0031 |
0.5382 | 6600 | 0.0032 |
0.5464 | 6700 | 0.0038 |
0.5545 | 6800 | 0.003 |
0.5627 | 6900 | 0.003 |
0.5708 | 7000 | 0.0029 |
0.5790 | 7100 | 0.0038 |
0.5871 | 7200 | 0.0032 |
0.5953 | 7300 | 0.0031 |
0.6034 | 7400 | 0.003 |
0.6116 | 7500 | 0.003 |
0.6198 | 7600 | 0.0039 |
0.6279 | 7700 | 0.0031 |
0.6361 | 7800 | 0.0031 |
0.6442 | 7900 | 0.0031 |
0.6524 | 8000 | 0.0039 |
0.6605 | 8100 | 0.003 |
0.6687 | 8200 | 0.003 |
0.6768 | 8300 | 0.003 |
0.6850 | 8400 | 0.0028 |
0.6931 | 8500 | 0.0035 |
0.7013 | 8600 | 0.0031 |
0.7095 | 8700 | 0.003 |
0.7176 | 8800 | 0.0026 |
0.7258 | 8900 | 0.0034 |
0.7339 | 9000 | 0.0033 |
0.7421 | 9100 | 0.003 |
0.7502 | 9200 | 0.0027 |
0.7584 | 9300 | 0.0029 |
0.7665 | 9400 | 0.0034 |
0.7747 | 9500 | 0.0029 |
0.7828 | 9600 | 0.0028 |
0.7910 | 9700 | 0.0027 |
0.7992 | 9800 | 0.0033 |
0.8073 | 9900 | 0.0031 |
0.8155 | 10000 | 0.0029 |
0.8236 | 10100 | 0.0028 |
0.8318 | 10200 | 0.0031 |
0.8399 | 10300 | 0.0031 |
0.8481 | 10400 | 0.003 |
0.8562 | 10500 | 0.0029 |
0.8644 | 10600 | 0.0028 |
0.8725 | 10700 | 0.0033 |
0.8807 | 10800 | 0.003 |
0.8889 | 10900 | 0.0029 |
0.8970 | 11000 | 0.0027 |
0.9052 | 11100 | 0.0033 |
0.9133 | 11200 | 0.0029 |
0.9215 | 11300 | 0.0029 |
0.9296 | 11400 | 0.0029 |
0.9378 | 11500 | 0.003 |
0.9459 | 11600 | 0.0034 |
0.9541 | 11700 | 0.0031 |
0.9622 | 11800 | 0.0027 |
0.9704 | 11900 | 0.0029 |
0.9786 | 12000 | 0.0034 |
0.9867 | 12100 | 0.0032 |
0.9949 | 12200 | 0.003 |
1.0030 | 12300 | 0.0032 |
1.0112 | 12400 | 0.0028 |
1.0193 | 12500 | 0.003 |
1.0275 | 12600 | 0.0027 |
1.0356 | 12700 | 0.0034 |
1.0438 | 12800 | 0.0029 |
1.0519 | 12900 | 0.0025 |
1.0601 | 13000 | 0.0028 |
1.0683 | 13100 | 0.0026 |
1.0764 | 13200 | 0.0035 |
1.0846 | 13300 | 0.0026 |
1.0927 | 13400 | 0.0028 |
1.1009 | 13500 | 0.0026 |
1.1090 | 13600 | 0.0034 |
1.1172 | 13700 | 0.0028 |
1.1253 | 13800 | 0.0027 |
1.1335 | 13900 | 0.0026 |
1.1416 | 14000 | 0.0031 |
1.1498 | 14100 | 0.0025 |
1.1580 | 14200 | 0.0025 |
1.1661 | 14300 | 0.0025 |
1.1743 | 14400 | 0.0024 |
1.1824 | 14500 | 0.0031 |
1.1906 | 14600 | 0.0025 |
1.1987 | 14700 | 0.0024 |
1.2069 | 14800 | 0.0025 |
1.2150 | 14900 | 0.0029 |
1.2232 | 15000 | 0.0025 |
1.2313 | 15100 | 0.0025 |
1.2395 | 15200 | 0.0023 |
1.2477 | 15300 | 0.0024 |
1.2558 | 15400 | 0.0029 |
1.2640 | 15500 | 0.0023 |
1.2721 | 15600 | 0.0023 |
1.2803 | 15700 | 0.0023 |
1.2884 | 15800 | 0.0032 |
1.2966 | 15900 | 0.0023 |
1.3047 | 16000 | 0.0023 |
1.3129 | 16100 | 0.0024 |
1.3210 | 16200 | 0.0025 |
1.3292 | 16300 | 0.0028 |
1.3374 | 16400 | 0.0023 |
1.3455 | 16500 | 0.0021 |
1.3537 | 16600 | 0.0023 |
1.3618 | 16700 | 0.0029 |
1.3700 | 16800 | 0.0023 |
1.3781 | 16900 | 0.0023 |
1.3863 | 17000 | 0.0025 |
1.3944 | 17100 | 0.0028 |
1.4026 | 17200 | 0.0023 |
1.4107 | 17300 | 0.0023 |
1.4189 | 17400 | 0.0023 |
1.4271 | 17500 | 0.0023 |
1.4352 | 17600 | 0.0029 |
1.4434 | 17700 | 0.0022 |
1.4515 | 17800 | 0.0022 |
1.4597 | 17900 | 0.0023 |
1.4678 | 18000 | 0.0026 |
1.4760 | 18100 | 0.0024 |
1.4841 | 18200 | 0.0023 |
1.4923 | 18300 | 0.0024 |
1.5004 | 18400 | 0.0024 |
1.5086 | 18500 | 0.0026 |
1.5168 | 18600 | 0.0022 |
1.5249 | 18700 | 0.0023 |
1.5331 | 18800 | 0.0023 |
1.5412 | 18900 | 0.003 |
1.5494 | 19000 | 0.002 |
1.5575 | 19100 | 0.0022 |
1.5657 | 19200 | 0.0023 |
1.5738 | 19300 | 0.0023 |
1.5820 | 19400 | 0.0028 |
1.5901 | 19500 | 0.0022 |
1.5983 | 19600 | 0.0023 |
1.6065 | 19700 | 0.0022 |
1.6146 | 19800 | 0.0028 |
1.6228 | 19900 | 0.0022 |
1.6309 | 20000 | 0.0023 |
1.6391 | 20100 | 0.0025 |
1.6472 | 20200 | 0.0028 |
1.6554 | 20300 | 0.0023 |
1.6635 | 20400 | 0.0021 |
1.6717 | 20500 | 0.0022 |
1.6798 | 20600 | 0.0022 |
1.6880 | 20700 | 0.0025 |
1.6962 | 20800 | 0.0024 |
1.7043 | 20900 | 0.0023 |
1.7125 | 21000 | 0.0021 |
1.7206 | 21100 | 0.0024 |
1.7288 | 21200 | 0.0024 |
1.7369 | 21300 | 0.0023 |
1.7451 | 21400 | 0.0022 |
1.7532 | 21500 | 0.0021 |
1.7614 | 21600 | 0.0025 |
1.7696 | 21700 | 0.0023 |
1.7777 | 21800 | 0.002 |
1.7859 | 21900 | 0.0022 |
1.7940 | 22000 | 0.0025 |
1.8022 | 22100 | 0.0022 |
1.8103 | 22200 | 0.0023 |
1.8185 | 22300 | 0.0022 |
1.8266 | 22400 | 0.0021 |
1.8348 | 22500 | 0.0025 |
1.8429 | 22600 | 0.0025 |
1.8511 | 22700 | 0.0022 |
1.8593 | 22800 | 0.0023 |
1.8674 | 22900 | 0.0026 |
1.8756 | 23000 | 0.0022 |
1.8837 | 23100 | 0.0022 |
1.8919 | 23200 | 0.0022 |
1.9000 | 23300 | 0.0024 |
1.9082 | 23400 | 0.0022 |
1.9163 | 23500 | 0.0022 |
1.9245 | 23600 | 0.0023 |
1.9326 | 23700 | 0.0023 |
1.9408 | 23800 | 0.0027 |
1.9490 | 23900 | 0.0023 |
1.9571 | 24000 | 0.0023 |
1.9653 | 24100 | 0.0022 |
1.9734 | 24200 | 0.0027 |
1.9816 | 24300 | 0.0025 |
1.9897 | 24400 | 0.0023 |
1.9979 | 24500 | 0.0025 |
@misc{sternlicht2025chimeraknowledgebaseidea,
title={CHIMERA: A Knowledge Base of Idea Recombination in Scientific Literature},
author={Noy Sternlicht and Tom Hope},
year={2025},
eprint={2505.20779},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.20779},
}
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
Quick Links
Base model
sentence-transformers/all-mpnet-base-v2