CHIMERA: Prediction models
Collection
https://huggingface.co/papers/2505.20779
•
4 items
•
Updated
This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"Represent this sentence for searching relevant passages: The study addresses the need for effective time series forecasting methods to estimate the spread of epidemics, particularly in light of the resurgence of COVID-19 cases. It highlights the importance of accurately modeling both linear and non-linear features of epidemic data to provide state authorities and health officials with reliable short-term forecasts and strategies.We suggest combining 'ARIMA' and ",
'Transformers',
'the human brain is able to efficiently learn effective control strategies using limited resources',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
query
, answer
, and label
query | answer | label | |
---|---|---|---|
type | string | string | int |
details |
|
|
|
query | answer | label |
---|---|---|
Represent this sentence for searching relevant passages: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks.We suggest combining 'a Hidden Markov Model' and |
a multilayer perceptron |
1 |
Represent this sentence for searching relevant passages: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks.We suggest combining 'a Hidden Markov Model' and |
global expression information |
0 |
Represent this sentence for searching relevant passages: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks.We suggest combining 'a Hidden Markov Model' and |
some relevant physical parameters |
0 |
ContrastiveLoss
with these parameters:{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
per_device_train_batch_size
: 64learning_rate
: 2.3351317368662443e-06warmup_ratio
: 0.11883406097525227bf16
: Trueprompts
: {'query': 'Represent this sentence for searching relevant passages: '}batch_sampler
: no_duplicatesoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2.3351317368662443e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.11883406097525227warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: {'query': 'Represent this sentence for searching relevant passages: '}batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalEpoch | Step | Training Loss |
---|---|---|
0.0082 | 100 | 0.0051 |
0.0163 | 200 | 0.0038 |
0.0245 | 300 | 0.0037 |
0.0326 | 400 | 0.0036 |
0.0408 | 500 | 0.0046 |
0.0489 | 600 | 0.0035 |
0.0571 | 700 | 0.0035 |
0.0652 | 800 | 0.0034 |
0.0734 | 900 | 0.0044 |
0.0815 | 1000 | 0.0034 |
0.0897 | 1100 | 0.0035 |
0.0979 | 1200 | 0.0034 |
0.1060 | 1300 | 0.0034 |
0.1142 | 1400 | 0.0045 |
0.1223 | 1500 | 0.0034 |
0.1305 | 1600 | 0.0034 |
0.1386 | 1700 | 0.0033 |
0.1468 | 1800 | 0.0043 |
0.1549 | 1900 | 0.0034 |
0.1631 | 2000 | 0.0033 |
0.1712 | 2100 | 0.0032 |
0.1794 | 2200 | 0.0033 |
0.1876 | 2300 | 0.0044 |
0.1957 | 2400 | 0.0033 |
0.2039 | 2500 | 0.0034 |
0.2120 | 2600 | 0.0033 |
0.2202 | 2700 | 0.0042 |
0.2283 | 2800 | 0.0034 |
0.2365 | 2900 | 0.0033 |
0.2446 | 3000 | 0.0033 |
0.2528 | 3100 | 0.0036 |
0.2609 | 3200 | 0.0039 |
0.2691 | 3300 | 0.0033 |
0.2773 | 3400 | 0.0032 |
0.2854 | 3500 | 0.0034 |
0.2936 | 3600 | 0.0041 |
0.3017 | 3700 | 0.0031 |
0.3099 | 3800 | 0.0032 |
0.3180 | 3900 | 0.0031 |
0.3262 | 4000 | 0.004 |
0.3343 | 4100 | 0.0034 |
0.3425 | 4200 | 0.003 |
0.3506 | 4300 | 0.0032 |
0.3588 | 4400 | 0.0032 |
0.3670 | 4500 | 0.004 |
0.3751 | 4600 | 0.0031 |
0.3833 | 4700 | 0.0033 |
0.3914 | 4800 | 0.0031 |
0.3996 | 4900 | 0.004 |
0.4077 | 5000 | 0.0032 |
0.4159 | 5100 | 0.0031 |
0.4240 | 5200 | 0.0031 |
0.4322 | 5300 | 0.0031 |
0.4403 | 5400 | 0.0039 |
0.4485 | 5500 | 0.003 |
0.4567 | 5600 | 0.003 |
0.4648 | 5700 | 0.0031 |
0.4730 | 5800 | 0.0038 |
0.4811 | 5900 | 0.0031 |
0.4893 | 6000 | 0.0032 |
0.4974 | 6100 | 0.0031 |
0.5056 | 6200 | 0.0033 |
0.5137 | 6300 | 0.0035 |
0.5219 | 6400 | 0.0031 |
0.5300 | 6500 | 0.0031 |
0.5382 | 6600 | 0.0031 |
0.5464 | 6700 | 0.0038 |
0.5545 | 6800 | 0.0031 |
0.5627 | 6900 | 0.003 |
0.5708 | 7000 | 0.0029 |
0.5790 | 7100 | 0.0037 |
0.5871 | 7200 | 0.0033 |
0.5953 | 7300 | 0.0031 |
0.6034 | 7400 | 0.003 |
0.6116 | 7500 | 0.003 |
0.6198 | 7600 | 0.004 |
0.6279 | 7700 | 0.0031 |
0.6361 | 7800 | 0.0031 |
0.6442 | 7900 | 0.0031 |
0.6524 | 8000 | 0.0039 |
0.6605 | 8100 | 0.0029 |
0.6687 | 8200 | 0.003 |
0.6768 | 8300 | 0.0029 |
0.6850 | 8400 | 0.0028 |
0.6931 | 8500 | 0.0036 |
0.7013 | 8600 | 0.0031 |
0.7095 | 8700 | 0.0029 |
0.7176 | 8800 | 0.0028 |
0.7258 | 8900 | 0.0035 |
0.7339 | 9000 | 0.0033 |
0.7421 | 9100 | 0.003 |
0.7502 | 9200 | 0.0028 |
0.7584 | 9300 | 0.0029 |
0.7665 | 9400 | 0.0035 |
0.7747 | 9500 | 0.003 |
0.7828 | 9600 | 0.0028 |
0.7910 | 9700 | 0.0027 |
0.7992 | 9800 | 0.0034 |
0.8073 | 9900 | 0.0032 |
0.8155 | 10000 | 0.003 |
0.8236 | 10100 | 0.0029 |
0.8318 | 10200 | 0.0032 |
0.8399 | 10300 | 0.0032 |
0.8481 | 10400 | 0.003 |
0.8562 | 10500 | 0.0029 |
0.8644 | 10600 | 0.0029 |
0.8725 | 10700 | 0.0033 |
0.8807 | 10800 | 0.003 |
0.8889 | 10900 | 0.0029 |
0.8970 | 11000 | 0.0028 |
0.9052 | 11100 | 0.0035 |
0.9133 | 11200 | 0.003 |
0.9215 | 11300 | 0.0029 |
0.9296 | 11400 | 0.0029 |
0.9378 | 11500 | 0.0029 |
0.9459 | 11600 | 0.0034 |
0.9541 | 11700 | 0.0031 |
0.9622 | 11800 | 0.0028 |
0.9704 | 11900 | 0.003 |
0.9786 | 12000 | 0.0035 |
0.9867 | 12100 | 0.0032 |
0.9949 | 12200 | 0.003 |
1.0030 | 12300 | 0.0033 |
1.0112 | 12400 | 0.0029 |
1.0193 | 12500 | 0.003 |
1.0275 | 12600 | 0.0029 |
1.0356 | 12700 | 0.0036 |
1.0438 | 12800 | 0.003 |
1.0519 | 12900 | 0.0027 |
1.0601 | 13000 | 0.0028 |
1.0683 | 13100 | 0.0028 |
1.0764 | 13200 | 0.0036 |
1.0846 | 13300 | 0.0027 |
1.0927 | 13400 | 0.0028 |
1.1009 | 13500 | 0.0029 |
1.1090 | 13600 | 0.0037 |
1.1172 | 13700 | 0.0029 |
1.1253 | 13800 | 0.0029 |
1.1335 | 13900 | 0.0027 |
1.1416 | 14000 | 0.0033 |
1.1498 | 14100 | 0.003 |
1.1580 | 14200 | 0.0027 |
1.1661 | 14300 | 0.0028 |
1.1743 | 14400 | 0.0026 |
1.1824 | 14500 | 0.0036 |
1.1906 | 14600 | 0.0028 |
1.1987 | 14700 | 0.0027 |
1.2069 | 14800 | 0.0029 |
1.2150 | 14900 | 0.0035 |
1.2232 | 15000 | 0.0027 |
1.2313 | 15100 | 0.0027 |
1.2395 | 15200 | 0.0027 |
1.2477 | 15300 | 0.0028 |
1.2558 | 15400 | 0.0035 |
1.2640 | 15500 | 0.0027 |
1.2721 | 15600 | 0.0027 |
1.2803 | 15700 | 0.0027 |
1.2884 | 15800 | 0.0037 |
1.2966 | 15900 | 0.0027 |
1.3047 | 16000 | 0.0027 |
1.3129 | 16100 | 0.0027 |
1.3210 | 16200 | 0.0028 |
1.3292 | 16300 | 0.0033 |
1.3374 | 16400 | 0.0026 |
1.3455 | 16500 | 0.0025 |
1.3537 | 16600 | 0.0028 |
1.3618 | 16700 | 0.0034 |
1.3700 | 16800 | 0.0027 |
1.3781 | 16900 | 0.0026 |
1.3863 | 17000 | 0.0027 |
1.3944 | 17100 | 0.0033 |
1.4026 | 17200 | 0.0027 |
1.4107 | 17300 | 0.0027 |
1.4189 | 17400 | 0.0026 |
1.4271 | 17500 | 0.0027 |
1.4352 | 17600 | 0.0034 |
1.4434 | 17700 | 0.0027 |
1.4515 | 17800 | 0.0025 |
1.4597 | 17900 | 0.0027 |
1.4678 | 18000 | 0.0031 |
1.4760 | 18100 | 0.0027 |
1.4841 | 18200 | 0.0027 |
1.4923 | 18300 | 0.0027 |
1.5004 | 18400 | 0.0027 |
1.5086 | 18500 | 0.0031 |
1.5168 | 18600 | 0.0025 |
1.5249 | 18700 | 0.0026 |
1.5331 | 18800 | 0.0027 |
1.5412 | 18900 | 0.0035 |
1.5494 | 19000 | 0.0025 |
1.5575 | 19100 | 0.0027 |
1.5657 | 19200 | 0.0026 |
1.5738 | 19300 | 0.0028 |
1.5820 | 19400 | 0.0032 |
1.5901 | 19500 | 0.0025 |
1.5983 | 19600 | 0.0027 |
1.6065 | 19700 | 0.0026 |
1.6146 | 19800 | 0.0034 |
1.6228 | 19900 | 0.0027 |
1.6309 | 20000 | 0.0027 |
1.6391 | 20100 | 0.0028 |
1.6472 | 20200 | 0.0031 |
1.6554 | 20300 | 0.0028 |
1.6635 | 20400 | 0.0025 |
1.6717 | 20500 | 0.0025 |
1.6798 | 20600 | 0.0026 |
1.6880 | 20700 | 0.003 |
1.6962 | 20800 | 0.0029 |
1.7043 | 20900 | 0.0027 |
1.7125 | 21000 | 0.0025 |
1.7206 | 21100 | 0.0029 |
1.7288 | 21200 | 0.0029 |
1.7369 | 21300 | 0.0027 |
1.7451 | 21400 | 0.0026 |
1.7532 | 21500 | 0.0025 |
1.7614 | 21600 | 0.003 |
1.7696 | 21700 | 0.0028 |
1.7777 | 21800 | 0.0024 |
1.7859 | 21900 | 0.0025 |
1.7940 | 22000 | 0.003 |
1.8022 | 22100 | 0.0026 |
1.8103 | 22200 | 0.0027 |
1.8185 | 22300 | 0.0027 |
1.8266 | 22400 | 0.0026 |
1.8348 | 22500 | 0.003 |
1.8429 | 22600 | 0.0029 |
1.8511 | 22700 | 0.0025 |
1.8593 | 22800 | 0.0026 |
1.8674 | 22900 | 0.0031 |
1.8756 | 23000 | 0.0027 |
1.8837 | 23100 | 0.0026 |
1.8919 | 23200 | 0.0025 |
1.9000 | 23300 | 0.0028 |
1.9082 | 23400 | 0.0027 |
1.9163 | 23500 | 0.0027 |
1.9245 | 23600 | 0.0027 |
1.9326 | 23700 | 0.0026 |
1.9408 | 23800 | 0.0031 |
1.9490 | 23900 | 0.0027 |
1.9571 | 24000 | 0.0027 |
1.9653 | 24100 | 0.0026 |
1.9734 | 24200 | 0.0032 |
1.9816 | 24300 | 0.0029 |
1.9897 | 24400 | 0.0026 |
1.9979 | 24500 | 0.0028 |
2.0060 | 24600 | 0.0029 |
2.0142 | 24700 | 0.0026 |
2.0223 | 24800 | 0.0027 |
2.0305 | 24900 | 0.0033 |
2.0387 | 25000 | 0.0026 |
2.0468 | 25100 | 0.0026 |
2.0550 | 25200 | 0.0024 |
2.0631 | 25300 | 0.0026 |
2.0713 | 25400 | 0.0033 |
2.0794 | 25500 | 0.0025 |
2.0876 | 25600 | 0.0026 |
2.0957 | 25700 | 0.0026 |
2.1039 | 25800 | 0.0033 |
2.1120 | 25900 | 0.0025 |
2.1202 | 26000 | 0.0026 |
2.1284 | 26100 | 0.0026 |
2.1365 | 26200 | 0.0025 |
2.1447 | 26300 | 0.0031 |
2.1528 | 26400 | 0.0026 |
2.1610 | 26500 | 0.0025 |
2.1691 | 26600 | 0.0026 |
2.1773 | 26700 | 0.0032 |
2.1854 | 26800 | 0.0026 |
2.1936 | 26900 | 0.0026 |
2.2017 | 27000 | 0.0025 |
2.2099 | 27100 | 0.0032 |
2.2181 | 27200 | 0.0025 |
2.2262 | 27300 | 0.0025 |
2.2344 | 27400 | 0.0024 |
2.2425 | 27500 | 0.0025 |
2.2507 | 27600 | 0.0033 |
2.2588 | 27700 | 0.0024 |
2.2670 | 27800 | 0.0024 |
2.2751 | 27900 | 0.0024 |
2.2833 | 28000 | 0.0033 |
2.2914 | 28100 | 0.0025 |
2.2996 | 28200 | 0.0024 |
2.3078 | 28300 | 0.0026 |
2.3159 | 28400 | 0.0024 |
2.3241 | 28500 | 0.0032 |
2.3322 | 28600 | 0.0025 |
2.3404 | 28700 | 0.0024 |
2.3485 | 28800 | 0.0024 |
2.3567 | 28900 | 0.0032 |
2.3648 | 29000 | 0.0025 |
2.3730 | 29100 | 0.0024 |
2.3811 | 29200 | 0.0024 |
2.3893 | 29300 | 0.0028 |
2.3975 | 29400 | 0.003 |
2.4056 | 29500 | 0.0023 |
2.4138 | 29600 | 0.0025 |
2.4219 | 29700 | 0.0024 |
2.4301 | 29800 | 0.0032 |
2.4382 | 29900 | 0.0025 |
2.4464 | 30000 | 0.0024 |
2.4545 | 30100 | 0.0023 |
2.4627 | 30200 | 0.003 |
2.4708 | 30300 | 0.0024 |
2.4790 | 30400 | 0.0025 |
2.4872 | 30500 | 0.0025 |
2.4953 | 30600 | 0.0025 |
2.5035 | 30700 | 0.0031 |
2.5116 | 30800 | 0.0022 |
2.5198 | 30900 | 0.0024 |
2.5279 | 31000 | 0.0024 |
2.5361 | 31100 | 0.0032 |
2.5442 | 31200 | 0.0024 |
2.5524 | 31300 | 0.0023 |
2.5605 | 31400 | 0.0025 |
2.5687 | 31500 | 0.0024 |
2.5769 | 31600 | 0.0031 |
2.5850 | 31700 | 0.0024 |
2.5932 | 31800 | 0.0024 |
2.6013 | 31900 | 0.0024 |
2.6095 | 32000 | 0.0031 |
2.6176 | 32100 | 0.0025 |
2.6258 | 32200 | 0.0025 |
2.6339 | 32300 | 0.0025 |
2.6421 | 32400 | 0.0027 |
2.6502 | 32500 | 0.0029 |
2.6584 | 32600 | 0.0024 |
2.6666 | 32700 | 0.0023 |
2.6747 | 32800 | 0.0025 |
2.6829 | 32900 | 0.0028 |
2.6910 | 33000 | 0.0026 |
2.6992 | 33100 | 0.0025 |
2.7073 | 33200 | 0.0024 |
2.7155 | 33300 | 0.0025 |
2.7236 | 33400 | 0.0026 |
2.7318 | 33500 | 0.0027 |
2.7399 | 33600 | 0.0025 |
2.7481 | 33700 | 0.0024 |
2.7563 | 33800 | 0.0028 |
2.7644 | 33900 | 0.0025 |
2.7726 | 34000 | 0.0024 |
2.7807 | 34100 | 0.0023 |
2.7889 | 34200 | 0.0027 |
2.7970 | 34300 | 0.0024 |
2.8052 | 34400 | 0.0025 |
2.8133 | 34500 | 0.0024 |
2.8215 | 34600 | 0.0024 |
2.8297 | 34700 | 0.0029 |
2.8378 | 34800 | 0.0027 |
2.8460 | 34900 | 0.0025 |
2.8541 | 35000 | 0.0023 |
2.8623 | 35100 | 0.0029 |
2.8704 | 35200 | 0.0025 |
2.8786 | 35300 | 0.0024 |
2.8867 | 35400 | 0.0024 |
2.8949 | 35500 | 0.0024 |
2.9030 | 35600 | 0.0028 |
2.9112 | 35700 | 0.0026 |
2.9194 | 35800 | 0.0023 |
2.9275 | 35900 | 0.0024 |
2.9357 | 36000 | 0.003 |
2.9438 | 36100 | 0.0025 |
2.9520 | 36200 | 0.0025 |
2.9601 | 36300 | 0.0024 |
2.9683 | 36400 | 0.0028 |
2.9764 | 36500 | 0.0027 |
2.9846 | 36600 | 0.0027 |
2.9927 | 36700 | 0.0025 |
@misc{sternlicht2025chimeraknowledgebaseidea,
title={CHIMERA: A Knowledge Base of Idea Recombination in Scientific Literature},
author={Noy Sternlicht and Tom Hope},
year={2025},
eprint={2505.20779},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.20779},
}
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
Quick Links
Base model
BAAI/bge-large-en-v1.5