Mistral-7B-Instruct-v0.2-mirage-all-teacher-instruct-mistral-sft

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9628

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.3478 0.0412 200 1.2310
1.3495 0.0824 400 1.1826
1.3753 0.1237 600 1.1557
1.3454 0.1649 800 1.1297
1.2731 0.2061 1000 1.1071
1.3863 0.2473 1200 1.0878
1.2567 0.2885 1400 1.0777
1.257 0.3298 1600 1.0630
1.2129 0.3710 1800 1.0518
1.1939 0.4122 2000 1.0405
1.2658 0.4534 2200 1.0313
1.1718 0.4946 2400 1.0186
1.1795 0.5359 2600 1.0102
1.1984 0.5771 2800 1.0008
1.157 0.6183 3000 0.9930
1.1542 0.6595 3200 0.9862
1.1648 0.7007 3400 0.9802
1.1403 0.7420 3600 0.9750
1.1268 0.7832 3800 0.9705
1.2122 0.8244 4000 0.9672
1.0571 0.8656 4200 0.9649
1.0903 0.9068 4400 0.9635
1.178 0.9481 4600 0.9629
1.1661 0.9893 4800 0.9628

Framework versions

  • PEFT 0.7.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for nthakur/Mistral-7B-Instruct-v0.2-mirage-all-teacher-instruct-mistral-sft

Adapter
(892)
this model