JacobLinCool's picture
End of training
fb5fb9f verified
metadata
library_name: peft
language:
  - en
license: mit
base_model: ntnu-smil/whisper-large-v3-turbo-sandi-train-1-ex-transcript-32-merged
tags:
  - wft
  - whisper
  - automatic-speech-recognition
  - audio
  - speech
  - generated_from_trainer
datasets:
  - ntnu-smil/sandi2025-ds
metrics:
  - wer
model-index:
  - name: whisper-large-v3-turbo-sandi-train-dev-1-ex-transcript-32-2x-cft
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: ntnu-smil/sandi2025-ds
          type: ntnu-smil/sandi2025-ds
        metrics:
          - type: wer
            value: 36.013342313736814
            name: Wer

whisper-large-v3-turbo-sandi-train-dev-1-ex-transcript-32-2x-cft

This model is a fine-tuned version of ntnu-smil/whisper-large-v3-turbo-sandi-train-1-ex-transcript-32-merged on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6989
  • Wer: 36.0133
  • Cer: 26.8844
  • Decode Runtime: 231.3002
  • Wer Runtime: 0.1747
  • Cer Runtime: 0.3428

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 732

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Runtime Wer Runtime Cer Runtime
0.8381 0.1667 122 0.8004 38.2546 28.4316 221.0426 0.1936 0.3718
0.721 1.0546 244 0.7636 29.8239 21.6741 213.1620 0.1798 0.3544
1.1003 1.2213 366 0.7355 36.6304 27.2175 235.8508 0.1728 0.3398
1.07 2.1093 488 0.7148 32.8920 24.3094 232.6055 0.1917 0.3679
0.6578 2.2760 610 0.7043 35.3328 26.2606 232.2468 0.1869 0.3647
0.7273 3.1639 732 0.6989 36.0133 26.8844 231.3002 0.1747 0.3428

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.2
  • Pytorch 2.8.0.dev20250319+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1