See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2-1.5B-Instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- d020aeb145285680_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d020aeb145285680_train_data.json
type:
field_input: answer
field_instruction: question
field_output: correction
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: nttx/d6175cfb-c096-463d-9ef9-8fbf839e7955
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 3e-5
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 1500
micro_batch_size: 8
mlflow_experiment_name: /tmp/d020aeb145285680_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 15
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-8
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: false
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c3f66855-56e2-4521-bb56-bf0ae11b0307
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c3f66855-56e2-4521-bb56-bf0ae11b0307
warmup_steps: 50
weight_decay: 0.1
xformers_attention: null
d6175cfb-c096-463d-9ef9-8fbf839e7955
This model is a fine-tuned version of unsloth/Qwen2-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9995
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0009 | 1 | 1.6077 |
1.13 | 0.1329 | 150 | 1.1345 |
1.1755 | 0.2658 | 300 | 1.0894 |
1.1581 | 0.3988 | 450 | 1.0509 |
0.9753 | 0.5317 | 600 | 1.0313 |
1.1325 | 0.6646 | 750 | 1.0176 |
1.071 | 0.7975 | 900 | 1.0101 |
1.1208 | 0.9304 | 1050 | 1.0036 |
0.9736 | 1.0634 | 1200 | 0.9992 |
0.8331 | 1.1963 | 1350 | 0.9949 |
0.9211 | 1.3292 | 1500 | 0.9995 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nttx/d6175cfb-c096-463d-9ef9-8fbf839e7955
Base model
unsloth/Qwen2-1.5B-Instruct