Update model card: set pipeline tag, add library name and citation

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +51 -21
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
 
 
2
  license: other
3
  license_name: nvclv1
4
  license_link: LICENSE
5
- datasets:
6
- - ILSVRC/imagenet-1k
7
- pipeline_tag: image-feature-extraction
8
  ---
9
 
10
-
11
  [**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083).
12
 
13
  ## Model Overview
@@ -17,38 +17,34 @@ We have developed the first hybrid model for computer vision which leverages the
17
  ## Model Performance
18
 
19
  MambaVision demonstrates a strong performance by achieving a new SOTA Pareto-front in
20
- terms of Top-1 accuracy and throughput.
21
 
22
  <p align="center">
23
- <img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70%
24
  class="center">
25
  </p>
26
 
27
-
28
  ## Model Usage
29
 
30
  It is highly recommended to install the requirements for MambaVision by running the following:
31
 
32
-
33
  ```Bash
34
  pip install mambavision
35
  ```
36
 
37
- For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code.
38
 
39
  ### Image Classification
40
 
41
- In the following example, we demonstrate how MambaVision can be used for image classification.
42
-
43
- Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input:
44
 
 
45
 
46
  <p align="center">
47
- <img src="https://cdn-uploads.huggingface.co/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70%
48
  class="center">
49
  </p>
50
 
51
-
52
  The following snippet can be used for image classification:
53
 
54
  ```Python
@@ -77,18 +73,18 @@ transform = create_transform(input_size=input_resolution,
77
  inputs = transform(image).unsqueeze(0).cuda()
78
  # model inference
79
  outputs = model(inputs)
80
- logits = outputs['logits']
81
  predicted_class_idx = logits.argmax(-1).item()
82
  print("Predicted class:", model.config.id2label[predicted_class_idx])
83
  ```
84
 
85
- The predicted label is ```brown bear, bruin, Ursus arctos.```
86
 
87
  ### Feature Extraction
88
 
89
- MambaVision can also be used as a generic feature extractor.
90
 
91
- Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened.
92
 
93
  The following snippet can be used for feature extraction:
94
 
@@ -98,7 +94,7 @@ from PIL import Image
98
  from timm.data.transforms_factory import create_transform
99
  import requests
100
 
101
- model = AutoModel.from_pretrained("nvidia/MambaVision-T2-1K", trust_remote_code=True)
102
 
103
  # eval mode for inference
104
  model.cuda().eval()
@@ -123,7 +119,41 @@ print("Size of extracted features in stage 1:", features[0].size()) # torch.Size
123
  print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 640, 7, 7])
124
  ```
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
 
127
- ### License:
128
 
129
- [NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-T-1K/blob/main/LICENSE)
 
1
  ---
2
+ datasets:
3
+ - ILSVRC/imagenet-1k
4
  license: other
5
  license_name: nvclv1
6
  license_link: LICENSE
7
+ pipeline_tag: image-classification
8
+ library_name: transformers
 
9
  ---
10
 
 
11
  [**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083).
12
 
13
  ## Model Overview
 
17
  ## Model Performance
18
 
19
  MambaVision demonstrates a strong performance by achieving a new SOTA Pareto-front in
20
+ terms of Top-1 accuracy and throughput.
21
 
22
  <p align="center">
23
+ <img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70%
24
  class="center">
25
  </p>
26
 
 
27
  ## Model Usage
28
 
29
  It is highly recommended to install the requirements for MambaVision by running the following:
30
 
 
31
  ```Bash
32
  pip install mambavision
33
  ```
34
 
35
+ For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code.
36
 
37
  ### Image Classification
38
 
39
+ In the following example, we demonstrate how MambaVision can be used for image classification.
 
 
40
 
41
+ Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input:
42
 
43
  <p align="center">
44
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70%
45
  class="center">
46
  </p>
47
 
 
48
  The following snippet can be used for image classification:
49
 
50
  ```Python
 
73
  inputs = transform(image).unsqueeze(0).cuda()
74
  # model inference
75
  outputs = model(inputs)
76
+ logits = outputs['logits']
77
  predicted_class_idx = logits.argmax(-1).item()
78
  print("Predicted class:", model.config.id2label[predicted_class_idx])
79
  ```
80
 
81
+ The predicted label is `brown bear, bruin, Ursus arctos.`
82
 
83
  ### Feature Extraction
84
 
85
+ MambaVision can also be used as a generic feature extractor.
86
 
87
+ Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened.
88
 
89
  The following snippet can be used for feature extraction:
90
 
 
94
  from timm.data.transforms_factory import create_transform
95
  import requests
96
 
97
+ model = AutoModel.from_pretrained("nvidia/MambaVision-T-1K", trust_remote_code=True)
98
 
99
  # eval mode for inference
100
  model.cuda().eval()
 
119
  print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 640, 7, 7])
120
  ```
121
 
122
+ ### License:
123
+
124
+ [NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-T-1K/blob/main/LICENSE)
125
+
126
+ ## Citation
127
+
128
+ If you find MambaVision to be useful for your work, please consider citing our paper:
129
+
130
+ ```
131
+ @article{hatamizadeh2024mambavision,
132
+ title={MambaVision: A Hybrid Mamba-Transformer Vision Backbone},
133
+ author={Hatamizadeh, Ali and Kautz, Jan},
134
+ journal={arXiv preprint arXiv:2407.08083},
135
+ year={2024}
136
+ }
137
+ ```
138
+
139
+ ## Star History
140
+
141
+ [![Stargazers repo roster for @NVlabs/MambaVision](https://bytecrank.com/nastyox/reporoster/php/stargazersSVG.php?user=NVlabs&repo=MambaVision)](https://github.com/NVlabs/MambaVision/stargazers)
142
+
143
+ [![Star History Chart](https://api.star-history.com/svg?repos=NVlabs/MambaVision&type=Date)](https://star-history.com/#NVlabs/MambaVision&Date)
144
+
145
+ ## Licenses
146
+
147
+ Copyright © 2025, NVIDIA Corporation. All rights reserved.
148
+
149
+ This work is made available under the NVIDIA Source Code License-NC. Click [here](LICENSE) to view a copy of this license.
150
+
151
+ The pre-trained models are shared under [CC-BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
152
+
153
+ For license information regarding the timm repository, please refer to its [repository](https://github.com/rwightman/pytorch-image-models).
154
+
155
+ For license information regarding the ImageNet dataset, please see the [ImageNet official website](https://www.image-net.org/).
156
 
157
+ ## Acknowledgement
158
 
159
+ This repository is built on top of the [timm](https://github.com/huggingface/pytorch-image-models) repository. We thank [Ross Wrightman](https://rwightman.com/) for creating and maintaining this high-quality library.