wasiuddina commited on
Commit
d99d200
·
verified ·
1 Parent(s): 87ade23

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -120
README.md CHANGED
@@ -10,162 +10,92 @@ tags:
10
  - pytorch
11
  ---
12
 
13
- # OpenCodeReasoning-14B
14
 
15
- ## Model Overview
16
 
17
- OpenCodeReasoning-14B-Instruct is a large language model (LLM) which is a derivative of [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (AKA the *reference model*).
18
  It is a reasoning model that is post trained for reasoning while code generation. The model supports a context length of 32K tokens.
19
 
20
  This model is ready for commercial use.
21
 
22
-
23
- ## License/Terms of Use
24
-
25
  GOVERNING TERMS: Your use of this model is governed by the [NVIDIA Internal Scientific Research and Development Model License.](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-internal-scientific-research-and-development-model-license/)
26
 
27
- **Model Developer:** NVIDIA
28
-
29
- **Model Dates:** Trained between February 2025 and March 2025
30
-
31
 
32
- ### Use Case:
33
- This model is intended for developers and researchers building LLMs.
34
 
35
- ## Release Date:
 
36
 
37
- 2025-04-21
38
 
39
  ## References
40
-
41
  - [\[2504.01943\] OpenCodeReasoning: Advancing Data Distillation for Competitive Coding](https://arxiv.org/abs/2504.01943)
42
 
 
43
  ## Model Architecture
44
  - Architecture Type: Dense decoder-only Transformer model
45
- - Network Architecture: Qwen
46
-
47
- **This model was developed based on Qwen2.5-14B-Instruct. <br>
48
- ** This model has 14B of model parameters. <br>
49
-
50
- ## Intended use
51
-
52
- OpenCodeReasoning-14B-Instruct is a competitive code generation focused reasoning and chat model intended to be used in English.
53
-
54
- ## Input
55
- - **Input Type:** Text
56
- - **Input Format:** String
57
- - **Input Parameters:** One-Dimensional (1D)
58
- - **Other Properties Related to Input:** Context length up to 32,768 tokens
59
-
60
- ## Output
61
- - **Output Type:** Text
62
- - **Output Format:** String
63
- - **Output Parameters:** One-Dimensional (1D)
64
- - **Other Properties Related to Output:** Context length up to 32,768 tokens
65
-
66
- ## Software Integration
67
- - **Runtime Engine:** Transformers
68
- - **Recommended Hardware Microarchitecture Compatibility:**
69
- - NVIDIA Hopper
70
- - NVIDIA Ampere
71
- - **Preferred Operating System(s):** Linux
72
-
73
- ## Model Version
74
- 1.0 (4/21/2025)
75
-
76
- ## Quick Start and Usage Recommendations:
77
-
78
- We recommend setting temperature to `0.6`, and Top P to `0.95` for inference on LiveCodeBench.
79
 
80
- ### Use It with Transformers
81
- See the snippet below for usage with [Hugging Face Transformers](https://huggingface.co/docs/transformers/main/en/index) library. Please see the example below.
82
 
83
- We recommend using the *transformers* package with version 4.48.3.
84
- Example:
 
 
 
85
 
86
- ```py
87
- import torch
88
- import transformers
89
 
90
- model_id = "nvidia/OpenCodeReasoning-14B"
91
- model_kwargs = {"torch_dtype": torch.bfloat16, "trust_remote_code": True, "device_map": "auto"}
92
- tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
93
- tokenizer.pad_token_id = tokenizer.eos_token_id
 
94
 
95
- pipeline = transformers.pipeline(
96
- "text-generation",
97
- model=model_id,
98
- tokenizer=tokenizer,
99
- max_new_tokens=32768,
100
- temperature=0.6,
101
- top_p=0.95,
102
- **model_kwargs
103
- )
104
 
105
- print(pipeline([{"role": "user", "content": "Solve x*(sin(x)+2)=0"}]))
106
- ```
107
-
108
- ## Training and Evaluation Datasets
109
-
110
- ## Training Datasets
111
-
112
- This model is trained using [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) dataset.
113
-
114
- **Data Collection for Training Datasets:**
115
-
116
- - Hybrid: Automated, Human, Synthetic
117
-
118
- **Data Labeling for Training Datasets:**
119
-
120
- - Hybrid: Automated, Human, Synthetic
121
 
122
- ## Evaluation Datasets
 
 
 
 
 
123
 
124
- We used the datasets listed in the next section to evaluate Llama-3.1-Nemotron-Ultra-253B-v1.
125
 
126
- Data Collection for Evaluation Datasets:
 
127
 
128
- - Hybrid: Human/Synthetic
129
 
130
- Data Labeling for Evaluation Datasets:
 
 
 
131
 
132
- - Hybrid: Human/Synthetic/Automatic
133
 
 
 
 
 
134
 
135
- ## Evaluation Results
136
 
137
- ### LiveCodeBench (20240801-20250201)
 
 
 
138
 
139
- | Models | Pass@1 |
140
- |:--------------|:------------|
141
- | R1-Distill-Qwen-14B | 53.1 |
142
- | OpenCodeReasoning-14B | 59.4 |
143
 
144
- User Prompt Template (without starter code):
145
 
146
- ````
147
- "You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests.
 
148
 
149
- Question: {prompt}
150
-
151
- Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on the sample inputs). Enclose your code within delimiters as follows. Ensure that when the python program runs, it reads the inputs, runs the algorithm and writes output to STDOUT.
152
- ```python
153
- # YOUR CODE HERE
154
- ```
155
- ````
156
-
157
- User Prompt Template (with starter code):
158
-
159
- ````
160
- You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests.
161
-
162
- Question: {prompt}
163
-
164
- You will use the following starter code to write the solution to the problem and enclose your code within delimiters.
165
- ```python
166
- {starter_code}
167
- ```
168
- ````
169
 
170
  ## Ethical Considerations:
171
 
 
10
  - pytorch
11
  ---
12
 
13
+ # OpenCode-Nemotron-14B Overview
14
 
15
+ ## Description
16
 
17
+ OpenCode-Nemotron-14B is a large language model (LLM) which is a derivative of [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (AKA the *reference model*).
18
  It is a reasoning model that is post trained for reasoning while code generation. The model supports a context length of 32K tokens.
19
 
20
  This model is ready for commercial use.
21
 
22
+ ### License/Terms of Use
 
 
23
  GOVERNING TERMS: Your use of this model is governed by the [NVIDIA Internal Scientific Research and Development Model License.](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-internal-scientific-research-and-development-model-license/)
24
 
25
+ ### Deployment Geography:
26
+ Global<br>
 
 
27
 
28
+ ### Use Case: <br>
29
+ This model is intended for developers and researchers building LLMs. <br>
30
 
31
+ ### Release Date: <br>
32
+ Huggingface [04/25/2025] via https://huggingface.co/nvidia/OpenCode-Nemotron-14B/ <br>
33
 
 
34
 
35
  ## References
 
36
  - [\[2504.01943\] OpenCodeReasoning: Advancing Data Distillation for Competitive Coding](https://arxiv.org/abs/2504.01943)
37
 
38
+
39
  ## Model Architecture
40
  - Architecture Type: Dense decoder-only Transformer model
41
+ - Network Architecture: Qwen2.5-14B-Instruct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
 
 
43
 
44
+ ## Input
45
+ **Input Type(s):** Text <br>
46
+ **Input Format(s):** String <br>
47
+ **Input Parameters:** One-Dimensional (1D) <br>
48
+ **Other Properties Related to Input:** Context length up to 32,768 tokens <br>
49
 
 
 
 
50
 
51
+ ## Output
52
+ **Output Type(s):** Text <br>
53
+ **Output Format:** String <br>
54
+ **Output Parameters:** One-Dimensional (1D) <br>
55
+ **Other Properties Related to Output:** Context length up to 32,768 tokens <br>
56
 
57
+ Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br>
 
 
 
 
 
 
 
 
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ ## Software Integration
61
+ * Runtime Engine: Transformers, vLLM <br>
62
+ * Recommended Hardware Microarchitecture Compatibility: <br>
63
+ - NVIDIA Ampere
64
+ - NVIDIA Hopper
65
+ * Preferred/Supported Operating System(s): Linux <br>
66
 
 
67
 
68
+ ## Model Version(s)
69
+ 1.0 (4/25/2025) <br>
70
 
 
71
 
72
+ ## Training Dataset
73
+ The training corpus for OpenCode-Nemotron-14B is [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) dataset, which is composed of competitive programming questions and DeepSeek-R1 generated responses.
74
+ * Data Collection Method: Hybrid: Automated, Human, Synthetic <br>
75
+ * Data Labeling Method: Hybrid: Automated, Human, Synthetic <br>
76
 
 
77
 
78
+ ## Evaluation Dataset
79
+ We used the datasets listed in the next section to evaluate OpenCodeReasoning-32B. <br>
80
+ * Data Collection Method: Hybrid: Automated, Human, Synthetic <br>
81
+ * Data Labeling Method: Hybrid: Automated, Human, Synthetic <br>
82
 
 
83
 
84
+ ### [LiveCodeBench](https://huggingface.co/datasets/livecodebench/code_generation_lite)
85
+ | Easy | Medium | Hard | Avg. |
86
+ |:------|:------|:------|:-----|
87
+ | 95.4 | 64.0| 18.0 | 51.3 |
88
 
89
+ ### [CodeContests](https://huggingface.co/datasets/deepmind/code_contests)
90
+ | Public | Private | Generated | All |
91
+ |:--------|:--------|:----------|:----|
92
+ | 46.7 | 29.6 | 32.3 | 18.1|
93
 
 
94
 
95
+ ## Inference
96
+ **Engine:** vLLM <br>
97
+ **Test Hardware** NVIDIA H100-80GB <br>
98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
  ## Ethical Considerations:
101