MetaMathQA_Meta-Llama-3.1-8B_LORA_ADAPTER_96rank

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 3.0

Training results

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.4.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for oftverse/MetaMathQA_Meta-Llama-3.1-8B_LORA_ADAPTER_96rank

Adapter
(146)
this model