Multilingual & Multimodal NLI (MMNLI)

The full details of the MMNLI model, including architecture, training, and evaluation, are described in the paper Beyond Similarity Scoring: Detecting Entailment and Contradiction in Multilingual and Multimodal Contexts by Istaiteh, O., Mdhaffar, S., & Estève, Y. (Interspeech 2025). Please cite this paper if you use the MMNLI model in your research.

This repository provides the MMNLI model, a multilingual and multimodal Natural Language Inference classifier.
It extends the BLASER architecture into multiclass NLI, supporting entailment, contradiction, and neutrality across text-text, text-speech, speech-text, and speech-speech input pairs.

The model is trained on the oist/multimodal_nli_dataset.
Please refer to that dataset card for details.

Results

On the test set of the dataset, the MMNLI model achieves an F1-micro score of 0.749.


Usage

The model depends on SONAR embeddings. You can use the official SONAR encoders (for text and speech) from GitHub or the ported SONAR text encoder cointegrated/SONAR_200_text_encoder.


Example 1: Speech–Text Inference

import torch
from sonar.inference_pipelines.speech import SpeechToEmbeddingModelPipeline
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
from transformers import AutoModel

# 1. Load SONAR encoders
speech_encoder = SpeechToEmbeddingModelPipeline(encoder="sonar_speech_encoder_eng")
text_encoder = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder", tokenizer="text_sonar_basic_encoder")

# 2. Encode premise (speech) and hypothesis (text)
premise_embs = speech_encoder.predict(["audio.wav"])
hypothesis_embs = text_encoder.predict(["The cat sat on the mat."], source_lang="eng_Latn")

# 3. Load MMNLI model 
mmnli_model_name = "oist/multimodal_nli_model"
mmnli_model = AutoModel.from_pretrained(mmnli_model_name, trust_remote_code=True)
mmnli_model.eval()

# 4. Run inference
with torch.inference_mode():
    logits = mmnli_model(premise_embs, hypothesis_embs)  # returns [batch_size, 3]
    pred_class = torch.argmax(logits, dim=-1).item()

print("Prediction:", pred_class)
# 0 = Entailment, 1 = Neutral, 2 = Contradiction

Example 2: Text–Text Inference (Official SONAR)

import torch
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
from transformers import AutoModel

# 1. Load official SONAR text encoder
text_encoder = TextToEmbeddingModelPipeline(
    encoder="text_sonar_basic_encoder", 
    tokenizer="text_sonar_basic_encoder"
)

# 2. Encode premise and hypothesis
premise_texts = ["Le chat s'assit sur le tapis."]
hypothesis_texts = ["The cat sat on the mat."]

premise_embs = text_encoder.predict(premise_texts, source_lang="fra_Latn")
hypothesis_embs = text_encoder.predict(hypothesis_texts, source_lang="eng_Latn")

# 3. Load MMNLI model 
mmnli_model = AutoModel.from_pretrained("oist/multimodal_nli_model", trust_remote_code=True)
mmnli_model.eval()

# 4. Run inference
with torch.inference_mode():
    logits = mmnli_model(premise_embs, hypothesis_embs)
    pred_class = torch.argmax(logits, dim=-1).item()

print("Prediction:", pred_class)
# 0 = Entailment, 1 = Neutral, 2 = Contradiction

Example 3: Text–Text Inference (Ported SONAR)

# !pip install transformers sentencepiece  torch -q
import torch
from transformers import AutoTokenizer, AutoModel
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder

# 1. Load ported SONAR text encoder
sonar_model_name = "cointegrated/SONAR_200_text_encoder"
encoder = M2M100Encoder.from_pretrained(sonar_model_name)
tokenizer = AutoTokenizer.from_pretrained(sonar_model_name)

def encode_mean_pool(texts, tokenizer, encoder, lang='eng_Latn', norm=False):
    tokenizer.src_lang = lang
    with torch.inference_mode():
        batch = tokenizer(texts, return_tensors='pt', padding=True)
        seq_embs = encoder(**batch).last_hidden_state
        mask = batch.attention_mask
        mean_emb = (seq_embs * mask.unsqueeze(-1)).sum(1) / mask.unsqueeze(-1).sum(1)
        if norm:
            mean_emb = torch.nn.functional.normalize(mean_emb)
    return mean_emb

# Example sentences
premise_sentences = ["Le chat s'assit sur le tapis."]
hypothesis_sentences = ["The cat sat on the mat."]

# 2. Encode premise and hypothesis
premise_embs = encode_mean_pool(premise_sentences, tokenizer, encoder, lang="fra_Latn")
hypothesis_embs = encode_mean_pool(hypothesis_sentences, tokenizer, encoder, lang="eng_Latn")


mmnli_model_name = "oist/multimodal_nli_model"
mmnli_model = AutoModel.from_pretrained(mmnli_model_name, trust_remote_code=True)
mmnli_model.eval()

# 4. Run inference
with torch.inference_mode():
    logits = mmnli_model(premise_embs, hypothesis_embs)  # returns [batch_size, 3]
    pred_class = torch.argmax(logits, dim=-1).item()

print("Prediction:", pred_class)
# 0 = Entailment, 1 = Neutral, 2 = Contradiction

Example 4: Using BLASER Semantic Score with MMNLI

You can use the BLASER semantic score in combination with the MMNLI NLI class to get a better understanding of the relationship between source and candidate translations. The NLI class gives the entailment/contradiction/neutral label, while the BLASER score provides a fine-grained semantic similarity.

# !pip install transformers sentencepiece  torch -q
import torch
from transformers import AutoTokenizer, AutoModel
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder

# -------------------------
# 1️⃣ Load ported SONAR text encoder
# -------------------------
sonar_model_name = "cointegrated/SONAR_200_text_encoder"
encoder = M2M100Encoder.from_pretrained(sonar_model_name)
tokenizer = AutoTokenizer.from_pretrained(sonar_model_name)

def encode_mean_pool(texts, tokenizer, encoder, lang='eng_Latn', norm=False):
    tokenizer.src_lang = lang
    with torch.inference_mode():
        batch = tokenizer(texts, return_tensors='pt', padding=True)
        seq_embs = encoder(**batch).last_hidden_state
        mask = batch.attention_mask
        mean_emb = (seq_embs * mask.unsqueeze(-1)).sum(1) / mask.unsqueeze(-1).sum(1)
        if norm:
            mean_emb = torch.nn.functional.normalize(mean_emb)
    return mean_emb

# -------------------------
# 2️⃣ Example sentences
# -------------------------
src_sentence = ["He is happy."]
mt_sentences = [
    "Il est content.",                   # entailment blaser:4.515
    "Il est malheureux."                  # contradiction blaser: 4.41
]

# Encode source and MT sentences
src_embs = encode_mean_pool(src_sentence, tokenizer, encoder, lang="eng_Latn")
mt_embs = encode_mean_pool(mt_sentences, tokenizer, encoder, lang="fra_Latn")

# -------------------------
# 3️⃣ Load MMNLI model
# -------------------------
mmnli_model_name = "oist/multimodal_nli_model"
mmnli_model = AutoModel.from_pretrained(mmnli_model_name, trust_remote_code=True)
mmnli_model.eval()

# -------------------------
# 4️⃣ Load BLASER QE model
# -------------------------
qe_model_name = "oist/blaser_2_0_qe_ported"
qe_model = AutoModel.from_pretrained(qe_model_name, trust_remote_code=True)
qe_model.eval()

# -------------------------
# 5️⃣ Run inference
# -------------------------
for i, mt_sentence in enumerate(mt_sentences):
    mt_emb = mt_embs[i].unsqueeze(0)  # keep batch dimension
    
    # NLI prediction
    with torch.inference_mode():
        logits = mmnli_model(src_embs, mt_emb)
        pred_class = torch.argmax(logits, dim=-1).item()
    
    # BLASER semantic score
    with torch.inference_mode():
        qe_score = qe_model(src_embs, mt_emb)  # shape [1, 1]
    
    print(f"\nMT sentence: '{mt_sentence}'")
    print("NLI prediction:", ["Entailment", "Neutral", "Contradiction"][pred_class])
    print("BLASER semantic score:", qe_score.item())

Labels

  • 0 = Entailment
  • 1 = Neutral
  • 2 = Contradiction

Citation

If you use this model, please cite:

@inproceedings{istaiteh2025beyond,
  title={Beyond Similarity Scoring: Detecting Entailment and Contradiction in Multilingual and Multimodal Contexts},
  author={Istaiteh, Othman and Mdhaffar, Salima and Est{\`e}ve, Yannick},
  booktitle={Proc. Interspeech 2025},
  pages={286--290},
  year={2025}
}
Downloads last month
54
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support