|
---
|
|
language:
|
|
- multilingual
|
|
- ar
|
|
- bg
|
|
- ca
|
|
- cs
|
|
- da
|
|
- de
|
|
- el
|
|
- en
|
|
- es
|
|
- et
|
|
- fa
|
|
- fi
|
|
- fr
|
|
- gl
|
|
- gu
|
|
- he
|
|
- hi
|
|
- hr
|
|
- hu
|
|
- hy
|
|
- id
|
|
- it
|
|
- ja
|
|
- ka
|
|
- ko
|
|
- ku
|
|
- lt
|
|
- lv
|
|
- mk
|
|
- mn
|
|
- mr
|
|
- ms
|
|
- my
|
|
- nb
|
|
- nl
|
|
- pl
|
|
- pt
|
|
- ro
|
|
- ru
|
|
- sk
|
|
- sl
|
|
- sq
|
|
- sr
|
|
- sv
|
|
- th
|
|
- tr
|
|
- uk
|
|
- ur
|
|
- vi
|
|
license: apache-2.0
|
|
library_name: sentence-transformers
|
|
tags:
|
|
- sentence-transformers
|
|
- feature-extraction
|
|
- sentence-similarity
|
|
- transformers
|
|
language_bcp47:
|
|
- fr-ca
|
|
- pt-br
|
|
- zh-cn
|
|
- zh-tw
|
|
pipeline_tag: sentence-similarity
|
|
---
|
|
|
|
# sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
|
|
|
|
|
|
|
## Usage (Sentence-Transformers)
|
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
|
```
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can use the model like this:
|
|
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
sentences = ["This is an example sentence", "Each sentence is converted"]
|
|
|
|
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings)
|
|
```
|
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers)
|
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
|
|
|
```python
|
|
from transformers import AutoTokenizer, AutoModel
|
|
import torch
|
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging
|
|
def mean_pooling(model_output, attention_mask):
|
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
|
|
|
|
# Sentences we want sentence embeddings for
|
|
sentences = ['This is an example sentence', 'Each sentence is converted']
|
|
|
|
# Load model from HuggingFace Hub
|
|
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
|
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
|
|
|
# Tokenize sentences
|
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
# Compute token embeddings
|
|
with torch.no_grad():
|
|
model_output = model(**encoded_input)
|
|
|
|
# Perform pooling. In this case, average pooling
|
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
|
|
|
print("Sentence embeddings:")
|
|
print(sentence_embeddings)
|
|
```
|
|
|
|
|
|
|
|
## Full Model Architecture
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
|
)
|
|
```
|
|
|
|
## Citing & Authors
|
|
|
|
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
|
|
|
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "http://arxiv.org/abs/1908.10084",
|
|
}
|
|
``` |