from diffusers import CVVAEModel, AutoencoderKL, UNet3DConditionModelAdapter, ControlNetModel3D, ControlNetModel
import torch
import time
device = torch.device("cuda:0")
vae = CVVAEModel.from_pretrained(
"/data2/onkar/cvvae/CV-VAE",
subfolder='vae3d',
torch_dtype=torch.float16
)
vae.to(device)
print(vae)
vae.requires_grad_(False)
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support