Built with Axolotl

See axolotl config

axolotl version: 0.5.0

#base_model: mistralai/Mistral-7b-v0.1
base_model: Qwen/Qwen2.5-1.5B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

trust_remote_code: true

# load_in_8bit: true
# load_in_4bit: false
# strict: false

datasets:
  - path: open-ita-llms/OpenSFT-ita
    type: chat_template
    field_messages: messages
    message_field_role: role
    message_field_content: content

chat_template: chatml

dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qwen15B-opensft

# adapter: lora
# lora_model_dir:

sequence_len: 16392
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# input_layernorm layers
- model.layers.0.input_layernorm
- model.layers.1.input_layernorm
- model.layers.2.input_layernorm
- model.layers.3.input_layernorm
- model.layers.4.input_layernorm
- model.layers.5.input_layernorm
- model.layers.6.input_layernorm
# lm_head layers
# mlp.down_proj layers
- model.layers.2.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.1.mlp.down_proj
- model.layers.27.mlp.down_proj
- model.layers.3.mlp.down_proj
- model.layers.0.mlp.down_proj
- model.layers.6.mlp.down_proj
# mlp.gate_proj layers
- model.layers.6.mlp.gate_proj
- model.layers.1.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.7.mlp.gate_proj
- model.layers.2.mlp.gate_proj
- model.layers.9.mlp.gate_proj
# mlp.up_proj layers
- model.layers.6.mlp.up_proj
- model.layers.5.mlp.up_proj
- model.layers.3.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.4.mlp.up_proj
- model.layers.2.mlp.up_proj
- model.layers.14.mlp.up_proj
# model.embed_tokens layers
# model.norm layers
# post_attention_layernorm layers
- model.layers.0.post_attention_layernorm
- model.layers.1.post_attention_layernorm
- model.layers.2.post_attention_layernorm
- model.layers.3.post_attention_layernorm
- model.layers.4.post_attention_layernorm
- model.layers.5.post_attention_layernorm
- model.layers.6.post_attention_layernorm
# self_attn.k_proj layers
- model.layers.25.self_attn.k_proj
- model.layers.4.self_attn.k_proj
- model.layers.2.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.3.self_attn.k_proj
- model.layers.0.self_attn.k_proj
- model.layers.6.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.0.self_attn.o_proj
- model.layers.14.self_attn.o_proj
- model.layers.19.self_attn.o_proj
- model.layers.18.self_attn.o_proj
- model.layers.8.self_attn.o_proj
- model.layers.22.self_attn.o_proj
- model.layers.7.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.14.self_attn.q_proj
- model.layers.20.self_attn.q_proj
- model.layers.26.self_attn.q_proj
- model.layers.17.self_attn.q_proj
- model.layers.18.self_attn.q_proj
- model.layers.27.self_attn.q_proj
- model.layers.9.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.0.self_attn.v_proj
- model.layers.2.self_attn.v_proj
- model.layers.3.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.5.self_attn.v_proj
- model.layers.8.self_attn.v_proj
- model.layers.10.self_attn.v_proj




wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name: qwen2.5-1.5B-opensft
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_bnb_8bit #adamw_torch_fused #adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1.0e-04 # varia da 1e-3 a 1e-6

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 20
xformers_attention:
flash_attention: true

# loss_watchdog_threshold: 5.0
# loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 256
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
  pad_token: "<|im_end|>"
  eos_token: "<|im_end|>"

outputs/qwen15B-opensft

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the open-ita-llms/OpenSFT-ita dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
No log 0.0005 1 0.8033
0.8489 0.2503 538 0.6900
0.8416 0.5005 1076 0.6753
0.7929 0.7508 1614 0.6673
0.8003 1.0005 2152 0.6572
0.7125 1.2507 2690 0.6583
0.7049 1.5010 3228 0.6528
0.6987 1.7513 3766 0.6529
0.7025 2.0009 4304 0.6498
0.6387 2.2512 4842 0.6575
0.6495 2.5015 5380 0.6568
0.6711 2.7517 5918 0.6571

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.0+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
16
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for open-ita-llms/Qwen2.5-1.5B-OpenSFT-ita

Base model

Qwen/Qwen2.5-1.5B
Finetuned
(87)
this model

Dataset used to train open-ita-llms/Qwen2.5-1.5B-OpenSFT-ita