Model description
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
- Distance: (from credible set variants to gene)
- Molecular QTL Colocalization
- Variant Pathogenicity: (from VEP)
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
Intended uses & limitations
[More Information Needed]
Training Procedure
Gradient Boosting Classifier
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
objective | binary:logistic |
base_score | |
booster | |
callbacks | |
colsample_bylevel | |
colsample_bynode | |
colsample_bytree | 0.8 |
device | |
early_stopping_rounds | |
enable_categorical | False |
eval_metric | aucpr |
feature_types | |
feature_weights | |
gamma | |
grow_policy | |
importance_type | |
interaction_constraints | |
learning_rate | |
max_bin | |
max_cat_threshold | |
max_cat_to_onehot | |
max_delta_step | |
max_depth | 5 |
max_leaves | |
min_child_weight | 10 |
missing | nan |
monotone_constraints | |
multi_strategy | |
n_estimators | |
n_jobs | |
num_parallel_tree | |
random_state | 42 |
reg_alpha | 1 |
reg_lambda | 1.0 |
sampling_method | |
scale_pos_weight | 0.8 |
subsample | 0.8 |
tree_method | |
validate_parameters | |
verbosity | |
eta | 0.05 |
How to Get Started with the Model
To use the model, you can load it using the LocusToGeneModel.load_from_hub
method. This will return a LocusToGeneModel
object that can be used to make predictions on a feature matrix.
The model can then be used to make predictions using the predict
method.
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
Citation
https://doi.org/10.1038/s41588-021-00945-5
License
MIT
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support