Interact with your PDF documents like never before! 🤯 Extract text & images, then ask context-aware questions based on both. Powered by RAG techniques & multimodal LLMs. Perfect for studying, research & more! 📝👀 Try it out now!!!! ✍️
📝ChemQwen-vL is a vision-language model fine-tuned based on the Qwen2VL-2B Instruct model. It has been trained using the International Chemical Identifier (InChI) format for chemical compounds and is optimized for chemical compound identification. The model excels at generating the InChI and providing descriptions of chemical compounds based on their images. Its architecture operates within a multi-modal framework, combining image-text-text capabilities. It has been fine-tuned using datasets from: https://iupac.org/projects/
Published a new blogpost 📖 In this blogpost I have gone through the transformers' architecture emphasizing how shapes propagate throughout each layer. 🔗 https://huggingface.co/blog/not-lain/tensor-dims some interesting takeaways :
🌱 Potential Made Simple: Free Life System/Productivity App based on Rythmn of Existence. No BS. No Catch. Just want to cut through the noise and help
The Origin Story
Inspired by Rob Dyrdek's "Rhythm of Existence" philosophy, this system has been expanded into a comprehensive life management tool featuring habit tracking, journaling, life statistics, and more. While I support entrepreneurs creating premium productivity apps, I believe self-improvement should never have financial barriers. That’s why this system is open source and free—no paywalls, premium features, or gatekeeping. Anyone can use it to start optimizing their life, ensuring accessibility for all.
How to Get Started
Two ways to access the system:
HuggingFace Version (Recommended) - Visit Severian/Potential-Made-Simple - Create a free HuggingFace account if needed. - Duplicate the space to create your private version. - Pro tip: Save it as a PWA for offline mobile use.
- Habit tracking - Daily journaling with prompts - Life statistics and visualizations - Task management - Meal tracking - Progress metrics - Historical data analysis - And more!
Supporting the Project (Optional)
This system is free and always will be. If you find value in it, you can support my work at https://www.ko-fi.com/severian42. Contributions are entirely optional and don’t unlock extra features—they’re simply a way to say thanks.
My mission is to help as many people as possible optimize their lives and reach their full potential. Remember, self-improvement doesn’t have to come with a high price tag.
Checkout phi-4 from Microsoft, dropped a day ago... If you ❤️ the Phi series, then here is the GGUF - Sri-Vigneshwar-DJ/phi-4-GGUF. phi-4 is a 14B highly efficient open LLM that beats much larger models at math and reasoning - check out evaluations on the Open LLM.
❤️🔥Stranger Zone's MidJourney Mix Model Adapter is trending on the Very Model Page, with over 45,000+ downloads. Additionally, the Super Realism Model Adapter has over 52,000+ downloads, remains the top two adapter on Stranger Zone! strangerzonehf/Flux-Midjourney-Mix2-LoRA, strangerzonehf/Flux-Super-Realism-LoRA
Interesting Solution to the Problem of Misguided Attention
So I've been fascinated by the problem of Misguided Attention for a few weeks. I am trying to build an inference algorithm to help LLMs address that issue; but in the process, I found a cool short-term fix I call "Mindful Attention" using just prompt-engineering.
Have you ever thought about how our brains filter reality through layers of past experiences, concepts, and mental images? For example, when you look at an oak tree, are you truly seeing that oak tree in all its unique details, or are you overlaying it with a generalized idea of "oak tree"? This phenomenon inspired the new approach.
LLMs often fall into a similar trap, hence the Misguided Attention problem. They process input not as it’s uniquely presented but through patterns and templates they’ve seen before. This leads to responses that can feel "off," like missing the point of a carefully crafted prompt or defaulting to familiar but irrelevant solutions.
I wanted to address this head-on by encouraging LLMs to slow down, focus, and engage directly with the input—free of assumptions. This is the core of the Mindful Attention Directive, a prompt designed to steer models away from over-generalization and back into the moment.
And if you want to try this mindful approach in action, check out the LLM I’ve set up for testing: https://hf.co/chat/assistant/677e7ebcb0f26b87340f032e. It works about 80% of the time to counteract these issues, and the results are pretty cool.
I'll add the Gist with the full prompt. I admit, it is quite verbose but it's the most effective one I have landed on yet. I am working on a smaller version that can be appended to any System Prompt to harness the Mindful Attention. Feel free to experiment to find a better version for the community!
Just sharing a thought: I started using DeepSeek V3 a lot, and an idea struck me about agents "orchestrating during inference" on a test-time compute model like DeepSeek V3 or the O1 series.
Agents (Instruction + Function Calls + Memory) execute during inference, and based on the output decision, a decision is made to scale the time to reason or perform other tasks.
🎯Fine-tuning SmolLM2 on a lightweight synthetic reasoning dataset for reasoning-specific tasks. Future updates will focus on lightweight, blazing-fast reasoning models. Until then, check out the blog for fine-tuning details.
Combining smolagents with Anthropic’s best practices simplifies building powerful AI agents:
1. Code-Based Agents: Write actions as Python code, reducing steps by 30%. 2. Prompt Chaining: Break tasks into sequential subtasks with validation gates. 3. Routing: Classify inputs and direct them to specialized handlers. 4. Fallback: Handle tasks even if classification fails.
🎯Triangulum is a collection of pretrained and instruction-tuned generative models, designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively.
🎯The space handles documenting content from the input image along with standardized plain text. It includes adjustment tools with over 30 font styles, file formatting support for PDF and DOCX, textual alignments, font size adjustments, and line spacing modifications.
📄PDFs are rendered using the ReportLab software library toolkit.
🧪The datasets were prepared for a 3:2 aspect ratio by processing images of any dimension (width × height) in alignment with the adapter's concept. This involved using techniques such as magic expand, magic fill, or outpainting to adjust the remaining parts of the image to achieve the 3:2 ratio & posts training. This approach enhanced the desired image quality to up to 2 MB for detailed prompts and reduced artifacts in images sized at 1280 × 832.
🎈This approach was used instead of cropping down the 2x or 3x zoomed positions in the actual image. It generative filling to adjust the image's aspect ratio proportionally within the dataset.
🔧I used Canva's Magic Expand, Firefly's Generative Fill, and Flux's Outpaint for aspect ratio adjustments.
Fine-Textured [Polygon] Character 3D Design Renders 🙉
Adapters capable of providing better lighting control (Bn+, Bn-) and richer textures compared to previous sets require more contextual prompts for optimal performance.
The ideal settings are achieved at inference steps around 30–35, with the best dimensions being 1280 x 832 [ 3:2 ]. However, it also performs well with the default settings of 1024 x 1024 [ 1:1 ].