AI & ML interests

Local LLMs

Recent Activity

prithivMLmods 
posted an update about 11 hours ago
view post
Post
137
Demo of OCR & Math QA using multi-capable VLMs like MonkeyOCR-pro-1.2B, R1-One-Vision, VisionaryR1, Vision Matters-7B, and VIGAL-7B, all running together with support for both image and video inference. 🪐

✦ Demo Spaces :
⤷ Multimodal VLMs : prithivMLmods/Multimodal-VLMs
⤷ Multimodal OCR : prithivMLmods/Multimodal-OCR

✦ Models :
⤷ Visionary R1 : maifoundations/Visionary-R1
⤷ MonkeyOCR [1.2B] : echo840/MonkeyOCR-pro-1.2B
⤷ ViGaL 7B : yunfeixie/ViGaL-7B
⤷ R1 Onevision 7B : Fancy-MLLM/R1-Onevision-7B
⤷ Vision Matters 7B : Yuting6/Vision-Matters-7B

✦ MonkeyOCR-pro-1.2B Colab T4 Demo [ notebook ]
⤷ MonkeyOCR-pro-1.2B-ReportLab : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab/blob/main/MonkeyOCR-0709/MonkeyOCR-pro-1.2B-ReportLab.ipynb

✦ GitHub : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab

The community GPU grant was given by Hugging Face — special thanks to them.🤗🚀

.
.
.
To know more about it, visit the model card of the respective model. !!
Parveshiiii 
posted an update 3 days ago
view post
Post
2481
🧠 Glimpses of AGI — A Vision for All Humanity
What if AGI wasn’t just a distant dream—but a blueprint already unfolding?

I’ve just published a deep dive called Glimpses of AGI, exploring how scalable intelligence, synthetic reasoning, and alignment strategies are paving a new path forward. This isn’t your average tech commentary—it’s a bold vision for conscious AI systems that reason, align, and adapt beyond narrow tasks.

🔍 Read it, upvote it if it sparks something, and let’s ignite a collective conversation about the future of AGI.

https://huggingface.co/blog/Parveshiiii/glimpses-of-agi


zamal 
posted an update 5 days ago
view post
Post
3800
Hey all
Finally it's happening. DeepGit lite is back now, running on cpu only devices. Just smartly search across Github and spin up conversational agents in the background and have grounded conversation with repositories
Try it out now!!!! zamal/DeepGit
  • 1 reply
·
Parveshiiii 
posted an update 6 days ago
view post
Post
2707
🧠 MathX-5M by XenArcAI — Scalable Math Reasoning for Smarter LLMs

Introducing MathX-5M, a high-quality, instruction-tuned dataset built to supercharge mathematical reasoning in large language models. With 5 million rigorously filtered examples, it spans everything from basic arithmetic to advanced calculus—curated from public sources and enhanced with synthetic data.

🔍 Key Highlights:
- Step-by-step reasoning with verified answers
- Covers algebra, geometry, calculus, logic, and more
- RL-validated correctness and multi-stage filtering
- Ideal for fine-tuning, benchmarking, and educational AI

📂 - XenArcAI/MathX-5M


  • 1 reply
·
prithivMLmods 
posted an update 7 days ago
view post
Post
3419
Multimodal OCR with ReportLab? On Colab T4? (Nanonets OCR, Monkey OCR, OCRFlux 3B, Typhoo OCR 3B?) .. Yeah, it’s possible. I’ve made a dedicated Colab notebook to experiment with these models (all built on top of Qwen2.5 VL). 🤗🚀

Download notebooks here :

✦︎ NanonetsOCR : https://colab.research.google.com/drive/1VvA-amvSVxGdWgIsh4_by6KWOtEs_Iqp
✦︎ MonkeyOCR : https://colab.research.google.com/drive/1vPCojbmlXjDFUt06FJ1tjgnj_zWK4mUo
✦︎ OCRFluxOCR : https://colab.research.google.com/drive/1TDoCXzWdF2hxVLbISqW6DjXAzOyI7pzf
✦︎ TyphoonOCR : https://colab.research.google.com/drive/1_59zvLNnn1kvbiSFxzA1WiqhpbW8RKbz

🜲 Github : https://github.com/PRITHIVSAKTHIUR/OCR-ReportLab

What does it do?

1. Performs OCR on the input image
2. Generates a DOCX or PDF file with the input image and the extracted text

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update 9 days ago
view post
Post
1617
The bunch of comparable demos for Multimodal VLMs (excels in OCR, cinematography understanding, spatial reasoning, etc.) now up on the Hub 🤗 — max recent till Jun'25.

✦ Demo Spaces —

> [Nanonets-OCR-s, MonkeyOCR, Typhoon-OCR-7B, SmolDocling] : prithivMLmods/Multimodal-OCR2
> [GLM-4.1v, docscopeOCR-7B, MonkeyOCR, coreOCR-7B] : prithivMLmods/core-OCR
> [Camel-Doc-OCR, ViLaSR-7B, OCRFlux-3B, ShotVL-7B] : prithivMLmods/Doc-VLMs-v2-Localization
> [SkyCaptioner-V1, SpaceThinker-3B, coreOCR-7B, SpaceOm-3B] : prithivMLmods/VisionScope-R2
> [RolmOCR-7B, Qwen2-VL-OCR-2B, Aya-Vision-8B, Nanonets-OCR-s] : prithivMLmods/Multimodal-OCR
> [DREX-062225-7B, Typhoon-OCR-3B, olmOCR-7B-0225, VIREX-062225-7B] : prithivMLmods/Doc-VLMs-OCR
> [Cosmos-Reason1-7B, docscopeOCR-7B, Captioner-7B, visionOCR-3B] : prithivMLmods/DocScope-R1

✦ Space Collection : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

.
.
.
To know more about it, visit the model card of the respective model. !!
  • 1 reply
·
Nymbo 
posted an update 10 days ago
view post
Post
1595
Anyone know how to reset Claude web's MCP config? I connected mine when the HF MCP first released with just the default example spaces added. I added lots of other MCP spaces but Claude.ai doesn't update the available tools... "Disconnecting" the HF integration does nothing, deleting it and adding it again does nothing.

Refreshing tools works fine in VS Code because I can manually restart it in mcp.json, but claude.ai has no such option. Anyone got any ideas?
·
prithivMLmods 
posted an update 10 days ago
view post
Post
2385
The demo for Camel-Doc-OCR-062825 (exp) is optimized for document retrieval and direct Markdown (.md) generation from images and PDFs. Additional demos include OCRFlux-3B (document OCR), VilaSR (spatial reasoning with visual drawing), and ShotVL (cinematic language understanding). 🐪

✦ Space : prithivMLmods/Doc-VLMs-v2-Localization

Models :
⤷ camel-doc-ocr-062825 : prithivMLmods/Camel-Doc-OCR-062825
⤷ ocrflux-3b : ChatDOC/OCRFlux-3B
⤷ vilasr : AntResearchNLP/ViLaSR
⤷ shotvl : Vchitect/ShotVL-7B

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

The community GPU grant was given by Hugging Face — special thanks to them. This space supports the following tasks: (image inference, video inference) with result markdown canvas and object detection/localization. 🤗🚀

.
.
.
To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update 16 days ago
view post
Post
1958
The demo for DREX-062225-exp (Document Retrieval and Extraction eXpert ~ experimental) / typhoon-ocr-3b (a bilingual document parsing model built specifically for real-world documents) / VIREX-062225-exp (Video Information Retrieval and Extraction eXpert ~ experimental) / olmOCR-7B-0225-preview (the document parsing model based on Qwen2VL). 🤗

✦ Demo : prithivMLmods/Doc-VLMs-OCR ~ ( with .md canvas )

⤷ DREX-062225-exp : prithivMLmods/DREX-062225-exp
⤷ typhoon-ocr-3b : scb10x/typhoon-ocr-3b
⤷ VIREX-062225-exp : prithivMLmods/VIREX-062225-exp
⤷ olmOCR-7B-0225-preview : allenai/olmOCR-7B-0225-preview

⤷ Collection : prithivMLmods/doc-vl-685839064a863e1cd23be3f1
⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0
.
.
.

To know more about it, visit the model card of the respective model. !!
·
prithivMLmods 
posted an update 17 days ago
view post
Post
2680
Updated the docscopeOCR-7B-050425-exp with the DREX-062225-exp, with improved preciseness in table structure and line spacing in the markdown used on the document page. And though this is still an experimental one, it's expected to perform well in the defined DREX use cases [ Document Retrieval and Extraction eXpert – experimental ocr ]. 💻

⤷ Model : prithivMLmods/DREX-062225-exp
⤷ Demo : prithivMLmods/Doc-VLMs-OCR

⤷ Collection : prithivMLmods/doc-vl-685839064a863e1cd23be3f1
⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0
⤷ Git : https://github.com/PRITHIVSAKTHIUR/DREX.git
.
.
.

To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update 20 days ago
view post
Post
1889
The demo for smoldocling / nanonets ocr / typhoon ocr / monkey ocr explores the document OCR capabilities of various newly released multimodal VLMs in a single space. And if you're experiencing or demoing long document image OCR, kindly use the Smoldocling 256M preview [ Smoldocling is back in demo here. ] 🤗.

✦ Try the demo here : prithivMLmods/Multimodal-OCR2

⤷ MonkeyOCR Recognition : echo840/MonkeyOCR
⤷ Nanonets-OCR-s : nanonets/Nanonets-OCR-s
⤷ SmolDocling-256M-preview : ds4sd/SmolDocling-256M-preview
⤷ typhoon-ocr-7b : scb10x/typhoon-ocr-7b

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

⤷ Github : https://github.com/PRITHIVSAKTHIUR/Multimodal-OCR2


The community GPU grant was given by Hugging Face — special thanks to them. 🤗🚀



To know more about it, visit the model card of the respective model. !!
  • 2 replies
·
prithivMLmods 
posted an update 23 days ago
view post
Post
3869
The demo for the MonkeyOCR Recognition model, which adopts a Structure-Recognition-Relation (SRR) triplet paradigm & Nanonets-OCR-s a powerful, state-of-the-art image-to-markdown OCR model that goes far beyond traditional text extraction and other experimental document OCR models, is combined into a single space.

✦ Try the demo here : prithivMLmods/core-OCR
✦ Try Nanonets-OCR-s demo here : prithivMLmods/Multimodal-OCR

⤷ MonkeyOCR Recognition : echo840/MonkeyOCR
⤷ docscopeOCR-7B-050425-exp : prithivMLmods/docscopeOCR-7B-050425-exp
⤷ coreOCR-7B-050325-preview : prithivMLmods/coreOCR-7B-050325-preview
⤷ Nanonets-OCR-s : nanonets/Nanonets-OCR-s

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

Also, include a sample OCR test using the VisionOCR-3B-061125 model and the Qwen2-VL-OCR-2B-Instruct model.
⤷ Blog : https://huggingface.co/blog/prithivMLmods/visionocr-3b-061125-vs-qwen2-vl-ocr-2b-instruct

To know more about it, visit the model card of the respective model. !!
zamal 
posted an update 27 days ago
view post
Post
1600
Say hallo to GermaNER 💪– a lightweight, high-accuracy NER model for German texts, powered by XLM-RoBERTa + LoRA adapters!
⚡ Fast, efficient, and open-source – perfect for tagging names, places & orgs in real-world German data.
Try it now on Hugging Face 👉 fau/GermaNER
reach-vb 
posted an update 27 days ago
view post
Post
2676
Excited to onboard FeatherlessAI on Hugging Face as an Inference Provider - they bring a fleet of 6,700+ LLMs on-demand on the Hugging Face Hub 🤯

Starting today, you'd be able to access all those LLMs (OpenAI compatible) on HF model pages and via OpenAI client libraries too! 💥

Go, play with it today: https://huggingface.co/blog/inference-providers-featherless

P.S. They're also bringing on more GPUs to support all your concurrent requests!
zamal 
posted an update about 1 month ago
view post
Post
4401
🚀 Videoxity is live on Hugging Face! 🎞️
A powerful, modular toolkit for intelligent video manipulation and scene editing.

With Videoxity, you can:

🖼️ Auto-caption keyframes with BLIP

🧠 Filter scenes using natural language (e.g. “remove dog scenes”)

✂️ Seamlessly trim videos with FFmpeg

📊 Generate frame-based summaries

Powered by Groq LLM + LangChain, OpenCV, BLIP, and SentenceTransformers, Videoxity bridges vision and language to give developers full control over video content.
🔧 Built for developers. Feedback welcome!


👉 Try it out here fau/videoxity
leonardlin 
posted an update about 1 month ago
view post
Post
368
I'm excited to announce the official release of our Shisa V2 405B model:
shisa-ai/shisa-v2-llama3.1-405b

It's the strongest model ever trained in Japan, and even goes toe-to-toe w/ GPT-4o and DeepSeek-V3 in JA MT-Bench.

For all the details, be sure to check out post and overview report here: https://shisa.ai/posts/shisa-v2-405b/
prithivMLmods 
posted an update about 1 month ago
view post
Post
5733
OpenAI, Google, Hugging Face, and Anthropic have released guides and courses on building agents, prompting techniques, scaling AI use cases, and more. Below are 10+ minimalistic guides and courses that may help you in your progress. 📖

⤷ Agents Companion : https://www.kaggle.com/whitepaper-agent-companion
⤷ Building Effective Agents : https://www.anthropic.com/engineering/building-effective-agents
⤷ Guide to building agents by OpenAI : https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
⤷ Prompt engineering by Google : https://www.kaggle.com/whitepaper-prompt-engineering
⤷ Google: 601 real-world gen AI use cases : https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
⤷ Prompt engineering by IBM : https://www.ibm.com/think/topics/prompt-engineering-guide
⤷ Prompt Engineering by Anthropic : https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
⤷ Scaling AI use cases : https://cdn.openai.com/business-guides-and-resources/identifying-and-scaling-ai-use-cases.pdf
⤷ Prompting Guide 101 : https://services.google.com/fh/files/misc/gemini-for-google-workspace-prompting-guide-101.pdf
⤷ AI in the Enterprise by OpenAI : https://cdn.openai.com/business-guides-and-resources/ai-in-the-enterprise.pdf

by HF🤗 :
⤷ AI Agents Course by Huggingface : https://huggingface.co/learn/agents-course/unit0/introduction
⤷ Smol-agents Docs : https://huggingface.co/docs/smolagents/en/tutorials/building_good_agents
⤷ MCP Course by Huggingface : https://huggingface.co/learn/mcp-course/unit0/introduction
⤷ Other Course (LLM, Computer Vision, Deep RL, Audio, Diffusion, Cookbooks, etc..) : https://huggingface.co/learn
  • 2 replies
·
prithivMLmods 
posted an update about 1 month ago
view post
Post
2326
Just made a demo for Cosmos-Reason1, a physical AI model that understands physical common sense and generates appropriate embodied decisions in natural language through long chain-of-thought reasoning. Also added video understanding support to it. 🤗🚀

✦ Try the demo here : prithivMLmods/DocScope-R1

⤷ Cosmos-Reason1-7B : nvidia/Cosmos-Reason1-7B
⤷ docscopeOCR-7B-050425-exp : prithivMLmods/docscopeOCR-7B-050425-exp
⤷ Captioner-Relaxed : Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

⤷ GitHub :
https://github.com/PRITHIVSAKTHIUR/Cosmos-x-DocScope
https://github.com/PRITHIVSAKTHIUR/Nvidia-Cosmos-Reason1-Demo.

To know more about it, visit the model card of the respective model. !!
leonardlin 
posted an update about 2 months ago
view post
Post
2537
BTW, in case anyone wants to kick the tires, test their 日本語, I have our Shisa V2 405B model up and running temporarily: https://chat.shisa.ai/
  • 3 replies
·