Post
1083
You might not have heard of Moonshot AI — but within 24 hours, their new model Kimi K2 shot to the top of Hugging Face’s trending leaderboard.
So… who are they, and why does it matter?
Had a lot of fun co-writing this blog post with @xianbao , with key insights translated from Chinese, to unpack how this startup built a model that outperforms GPT-4.1, Claude Opus, and DeepSeek V3 on several major benchmarks.
🧵 A few standout facts:
1. From zero to $3.3B in 18 months:
Founded in March 2023, Moonshot is now backed by Alibaba, Tencent, Meituan, and HongShan.
2. A CEO who thinks from the end:
Yang Zhilin (31) previously worked at Meta AI, Google Brain, and Carnegie Mellon. His vision? Nothing less than AGI — still a rare ambition among Chinese AI labs.
3. A trillion-parameter model that’s surprisingly efficient:
Kimi K2 uses a mixture-of-experts architecture (32B active params per inference) and dominates on coding/math benchmarks.
4. The secret weapon: Muon optimizer:
A new training method that doubles efficiency, cuts memory in half, and ran 15.5T tokens with zero failures. Big implications.
Most importantly, their move from closed to open source signals a broader shift in China’s AI scene — following Baidu’s pivot. But as Yang puts it: “Users are the only real leaderboard.”
👇 Check out the full post to explore what Kimi K2 can do, how to try it, and why it matters for the future of open-source LLMs:
https://huggingface.co/blog/fdaudens/moonshot-ai-kimi-k2-explained
So… who are they, and why does it matter?
Had a lot of fun co-writing this blog post with @xianbao , with key insights translated from Chinese, to unpack how this startup built a model that outperforms GPT-4.1, Claude Opus, and DeepSeek V3 on several major benchmarks.
🧵 A few standout facts:
1. From zero to $3.3B in 18 months:
Founded in March 2023, Moonshot is now backed by Alibaba, Tencent, Meituan, and HongShan.
2. A CEO who thinks from the end:
Yang Zhilin (31) previously worked at Meta AI, Google Brain, and Carnegie Mellon. His vision? Nothing less than AGI — still a rare ambition among Chinese AI labs.
3. A trillion-parameter model that’s surprisingly efficient:
Kimi K2 uses a mixture-of-experts architecture (32B active params per inference) and dominates on coding/math benchmarks.
4. The secret weapon: Muon optimizer:
A new training method that doubles efficiency, cuts memory in half, and ran 15.5T tokens with zero failures. Big implications.
Most importantly, their move from closed to open source signals a broader shift in China’s AI scene — following Baidu’s pivot. But as Yang puts it: “Users are the only real leaderboard.”
👇 Check out the full post to explore what Kimi K2 can do, how to try it, and why it matters for the future of open-source LLMs:
https://huggingface.co/blog/fdaudens/moonshot-ai-kimi-k2-explained