Argilla Explorers

community

AI & ML interests

None defined yet.

Recent Activity

argillaexplorers's activity

not-lain 
posted an update about 21 hours ago
view post
Post
231
we now have more than 2000 public AI models using ModelHubMixin🤗
davidberenstein1957 
posted an update about 24 hours ago
nataliaElv 
posted an update 1 day ago
view post
Post
748
New chapter in the Hugging Face NLP course! 🤗 🚀

We've added a new chapter about the very basics of Argilla to the Hugging Face NLP course. Learn how to set up an Argilla instance, load & annotate datasets, and export them to the Hub. 

Any feedback for improvements welcome!

https://huggingface.co/learn/nlp-course/chapter10
burtenshaw 
posted an update 1 day ago
Tonic 
posted an update 2 days ago
view post
Post
1156
🙋🏻‍♂️ Hey there folks ,

Facebook AI just released JASCO models that make music stems .

you can try it out here : Tonic/audiocraft

hope you like it
burtenshaw 
posted an update 3 days ago
view post
Post
22716
We’re launching a FREE and CERTIFIED course on Agents!

We're thrilled to announce the launch of the Hugging Face Agents course on Learn! This interactive, certified course will guide you through building and deploying your own AI agents.

Here's what you'll learn:

- Understanding Agents: We'll break down the fundamentals of AI agents, showing you how they use LLMs to perceive their environment (observations), reason about it (thoughts), and take actions. Think of a smart assistant that can book appointments, answer emails, or even write code based on your instructions.
- Building with Frameworks: You'll dive into popular agent frameworks like LangChain, LlamaIndex and smolagents. These tools provide the building blocks for creating complex agent behaviors.
- Real-World Applications: See how agents are used in practice, from automating SQL queries to generating code and summarizing complex documents.
- Certification: Earn a certification by completing the course modules, implementing a use case, and passing a benchmark assessment. This proves your skills in building and deploying AI agents.
Audience

This course is designed for anyone interested in the future of AI. Whether you're a developer, data scientist, or simply curious about AI, this course will equip you with the knowledge and skills to build your own intelligent agents.

Enroll today and start building the next generation of AI agent applications!

https://bit.ly/hf-learn-agents
·
davidberenstein1957 
posted an update 4 days ago
Tonic 
posted an update 4 days ago
view post
Post
2207
🙋🏻‍♂️Hey there folks , Open LLM Europe just released Lucie 7B-Instruct model , a billingual instruct model trained on open data ! You can check out my unofficial demo here while we wait for the official inference api from the group : Tonic/Lucie-7B hope you like it 🚀
davanstrien 
posted an update 5 days ago
view post
Post
2902
Introducing scandi-fine-web-cleaner davanstrien/scandi-fine-web-cleaner, the first model trained on FineWeb-C community annotations!

FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?

Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.

Today, I'm happy to share the first classifier trained on this data.

🔍 What we've built:

- A lightweight classifier that efficiently removes low-quality content
- 90%+ precision demonstrated on Danish & Swedish
- Can process the 43M+ documents in Danish FineWeb2 with minimal compute

🌍 Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C ( data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.

Want to build a classifier for your language? Check out the full blog post with code examples and implementation details: https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html
  • 1 reply
·
not-lain 
posted an update 6 days ago
view post
Post
3633
Published a new blogpost 📖
In this blogpost I have gone through the transformers' architecture emphasizing how shapes propagate throughout each layer.
🔗 https://huggingface.co/blog/not-lain/tensor-dims
some interesting takeaways :
davanstrien 
posted an update 8 days ago
view post
Post
2075
The data-is-better-together/fineweb-c dataset is growing!

This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.

Why should you care?

The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data ( HuggingFaceFW/blogpost-fineweb-v1).

Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.

Why not use an LLM?

LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.

The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:

- Evaluate whether an LLM can label the educational quality for texts in that language well
- Directly be used for training quality classifiers
- Help discover other rules and huerisitcs for refining fineweb2 further for different languages.

This week the following languages where done:

Swedish thanks to: @Lauler @AntonVic @ohallstrom @bjarlestam @menbom @Ekgren @apsod

Ukrainian thanks to: @hannayukhymenko @robinhad @realPivo @RabotiahovDmytro @reciprocate

Assamese thanks to: @moyoor97 @Arpanjyoti @nawaf-helmi123 @pahigogoi1 @aelhence @kishorekashyap

Want to learn more: https://huggingface.co/blog/davanstrien/fineweb2-community

Contribute yourself here: data-is-better-together/fineweb-c
  • 1 reply
·
nataliaElv 
posted an update 9 days ago
Tonic 
posted an update 10 days ago
view post
Post
1624
microsoft just released Phi-4 , check it out here : Tonic/Phi-4

hope you like it :-)
davidberenstein1957 
posted an update 14 days ago
davidberenstein1957 
posted an update 19 days ago
davanstrien 
posted an update 22 days ago
view post
Post
3166
🇸🇰 Hovorte po slovensky? Help build better AI for Slovak!

We only need 90 more annotations to include Slovak in the next Hugging Face FineWeb2-C dataset ( data-is-better-together/fineweb-c) release!

Your contribution will help create better language models for 5+ million Slovak speakers.

Annotate here: data-is-better-together/fineweb-c.

Read more about why we're doing it: https://huggingface.co/blog/davanstrien/fineweb2-community
  • 3 replies
·
davanstrien 
posted an update 29 days ago
view post
Post
1769
Introducing FineWeb-C 🌐🎓, a community-built dataset for improving language models in ALL languages.

Inspired by FineWeb-Edu the community is labelling the educational quality of texts for many languages.

318 annotators, 32K+ annotations, 12 languages - and growing! 🌍

data-is-better-together/fineweb-c
burtenshaw 
posted an update 30 days ago
view post
Post
2941
People are flexing their end of year stats, so I made this app to show hub stats in a tidy design!

Thanks @Ameeeee and @jfcalvo for the feature from Argilla!
burtenshaw/recap
  • 1 reply
·
davidberenstein1957 
posted an update about 1 month ago
nataliaElv 
posted an update about 1 month ago
view post
Post
1660
If you are still wondering how the FineWeb2 annotations are done, how to follow the guidelines or how Argilla works, this is your video!

I go through a few samples of the FineWeb2 dataset and classify them based on their educational content. Check it out!

https://www.youtube.com/watch?v=_-ORB4WAVGU