Cosmos is a family of pre-trained models purpose-built for generating physics-aware videos and world states to advance physical AI development. The release includes Tokenizers nvidia/cosmos-tokenizer-672b93023add81b66a8ff8e6
I was initially pretty sceptical about Meta's Coconut paper [1] because the largest perf gains were reported on toy linguistic problems. However, these results on machine translation are pretty impressive!
* Iteratively sample CoTs from the model, using a mix of different search strategies. This gives you something like Stream of Search via prompting. * Verify correctness of each CoT using GPT-4o (needed because exact match doesn't work well in medicine where there are lots of aliases) * Use GPT-4o to reformat the concatenated CoTs into a single stream that includes smooth transitions like "hmm, wait" etc that one sees in o1 * Use the resulting data for SFT & RL * Use sparse rewards from GPT-4o to guide RL training. They find RL gives an average ~3 point boost across medical benchmarks and SFT on this data already gives a strong improvement.
Applying this strategy to other domains could be quite promising, provided the training data can be formulated with verifiable problems!
* 4 new video models * Multiple image models, including SANA & Flux Control * New quantizers -> GGUF & TorchAO * New training scripts Enjoy this holiday-special Diffusers release 🤗 Notes: https://github.com/huggingface/diffusers/releases/tag/v0.32.0
In the past seven days, the Diffusers team has shipped:
1. Two new video models 2. One new image model 3. Two new quantization backends 4. Three new fine-tuning scripts 5. Multiple fixes and library QoL improvements
Coffee on me if someone can guess 1 - 4 correctly.
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute 🔥
How? By combining step-wise reward models with tree search algorithms :)
We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"
We're open sourcing the full recipe and sharing a detailed blog post.
In our blog post we cover:
📈 Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.
🎄 Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.
🧭 Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM
We applied the same data-driven approach that led to SOTA English performance in🍷 FineWeb to thousands of languages.
🥂 FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.
The dataset is released under the permissive 📜 ODC-By 1.0 license, and the 💻 code to reproduce it and our evaluations is public.
We will very soon announce a big community project, and are working on a 📝 blogpost walking you through the entire dataset creation process. Stay tuned!
Train almost any model on a variety of tasks such as llm finetuning, text classification/regression, summarization, question answering, image classification/regression, object detection, tabular data, etc for FREE using AutoTrain locally. 🔥 https://github.com/huggingface/autotrain-advanced