gg-hf-g

community
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

gg-hf-g's activity

merve 
posted an update 3 days ago
danielhanchen 
posted an update 5 days ago
view post
Post
1483
💜 Qwen3 128K Context Length: We've released Dynamic 2.0 GGUFs + 4-bit safetensors!
Fixed: Now works on any inference engine and fixed issues with the chat template.
Qwen3 GGUFs:
30B-A3B: unsloth/Qwen3-30B-A3B-GGUF
235-A22B: unsloth/Qwen3-235B-A22B-GGUF
32B: unsloth/Qwen3-32B-GGUF

Read our guide on running Qwen3 here: https://docs.unsloth.ai/basics/qwen3-how-to-run-and-finetune

128K Context Length:
30B-A3B: unsloth/Qwen3-30B-A3B-128K-GGUF
235-A22B: unsloth/Qwen3-235B-A22B-128K-GGUF
32B: unsloth/Qwen3-32B-128K-GGUF

All Qwen3 uploads: unsloth/qwen3-680edabfb790c8c34a242f95
merve 
posted an update 5 days ago
view post
Post
2487
Meta released Llama Guard 4 and new Prompt Guard 2 models 🔥

Llama Guard 4 is a new model to filter model inputs/outputs both text-only and image 🛡️ use it before and after LLMs/VLMs! meta-llama/Llama-Guard-4-12B

Prompt Guard 2 22M & 86M are smol models to prevent model jailbreaks and prompt injections ⚔ meta-llama/Llama-Prompt-Guard-2-22M meta-llama/Llama-Guard-4-12B
Both come with new release of transformers 🤗

Try the model right away 👉🏻https://github.com/huggingface/huggingface-llama-recipes/blob/main/llama_guard_4.ipynb

Read our blog to learn more and easily get started 👉🏻 https://huggingface.co/blog/llama-guard-4 🦙
  • 1 reply
·
Xenova 
posted an update 7 days ago
merve 
posted an update 10 days ago
view post
Post
3915
Don't sleep on new AI at Meta Vision-Language release! 🔥

facebook/perception-encoder-67f977c9a65ca5895a7f6ba1
facebook/perception-lm-67f9783f171948c383ee7498

Meta dropped swiss army knives for vision with A2.0 license 👏
> image/video encoders for vision language modelling and spatial understanding (object detection etc) 👏
> The vision LM outperforms InternVL3 and Qwen2.5VL 👏
> They also release gigantic video and image datasets

The authors attempt to come up with single versatile vision encoder to align on diverse set of tasks.

They trained Perception Encoder (PE) Core: a new state-of-the-art family of vision encoders that can be aligned for both vision-language and spatial tasks. For zero-shot image tasks, it outperforms latest sota SigLIP2 👏



> Among fine-tuned ones, first one is PE-Spatial. It's a model to detect bounding boxes, segmentation, depth estimation and it outperforms all other models 😮



> Second one is PLM, Perception Language Model, where they combine PE-Core with Qwen2.5 LM 7B. it outperforms all other models (including InternVL3 which was trained with Qwen2.5LM too!)

The authors release the following checkpoints in sizes base, large and giant:

> 3 PE-Core checkpoints (224, 336, 448)
> 2 PE-Lang checkpoints (L, G)
> One PE-Spatial (G, 448)
> 3 PLM (1B, 3B, 8B)
> Datasets



Authors release following datasets 📑
> PE Video: Gigantic video datasete of 1M videos with 120k expert annotations ⏯️
> PLM-Video and PLM-Image: Human and auto-annotated image and video datasets on region-based tasks
> PLM-VideoBench: New video benchmark on MCQA
  • 2 replies
·
danielhanchen 
posted an update 10 days ago
view post
Post
5680
🦥 Introducing Unsloth Dynamic v2.0 GGUFs!
Our v2.0 quants set new benchmarks on 5-shot MMLU and KL Divergence, meaning you can now run & fine-tune quantized LLMs while preserving as much accuracy as possible.

Llama 4: unsloth/Llama-4-Scout-17B-16E-Instruct-GGUF
DeepSeek-R1: unsloth/DeepSeek-R1-GGUF-UD
Gemma 3: unsloth/gemma-3-27b-it-GGUF

We made selective layer quantization much smarter. Instead of modifying only a subset of layers, we now dynamically quantize all layers so every layer has a different bit. Now, our dynamic method can be applied to all LLM architectures, not just MoE's.

Blog with Details: https://docs.unsloth.ai/basics/dynamic-v2.0

All our future GGUF uploads will leverage Dynamic 2.0 and our hand curated 300K–1.5M token calibration dataset to improve conversational chat performance.

For accurate benchmarking, we built an evaluation framework to match the reported 5-shot MMLU scores of Llama 4 and Gemma 3. This allowed apples-to-apples comparisons between full-precision vs. Dynamic v2.0, QAT and standard iMatrix quants.

Dynamic v2.0 aims to minimize the performance gap between full-precision models and their quantized counterparts.
merve 
posted an update 12 days ago
view post
Post
3347
New foundation model on image and video captioning just dropped by NVIDIA AI 🔥

Describe Anything Model (DAM) is a 3B vision language model to generate detailed captions with localized references 😮

The team released the models, the dataset, a new benchmark and a demo 🤩 nvidia/describe-anything-680825bb8f5e41ff0785834c

Most of the vision LMs focus on image as a whole, lacking localized references in captions, and not taking in visual prompts (points, boxes, drawings around objects)

DAM addresses this on two levels: new vision backbone that takes in focal crops and the image itself, and a large scale dataset 👀

They generate a dataset by extending existing segmentation and referring expression generation datasets like REFCOCO, by passing in the images and classes to VLMs and generating captions.

Lastly, they also release a new benchmark again with self-supervision, they use an LLM to evaluate the detailed captions focusing on localization 👏
philschmid 
posted an update 17 days ago
view post
Post
2373
Gemini 2.5 Flash is here! We excited launch our first hybrid reasoning Gemini model. In Flash 2.5 developer can turn thinking off.

**TL;DR:**
- 🧠 Controllable "Thinking" with thinking budget with up to 24k token
- 🌌 1 Million multimodal input context for text, image, video, audio, and pdf
- 🛠️ Function calling, structured output, google search & code execution.
- 🏦 $0.15 1M input tokens; $0.6 or $3.5 (thinking on) per million output tokens (thinking tokens are billed as output tokens)
- 💡 Knowledge cut of January 2025
- 🚀 Rate limits - Free 10 RPM 500 req/day
- 🏅Outperforms 2.0 Flash on every benchmark

Try it ⬇️
https://aistudio.google.com/prompts/new_chat?model=gemini-2.5-flash-preview-04-17
  • 1 reply
·
Xenova 
posted an update 19 days ago
view post
Post
2529
Reasoning models like o3 and o4-mini are advancing faster than ever, but imagine what will be possible when they can run locally in your browser! 🤯

Well, with 🤗 Transformers.js, you can do just that! Here's Zyphra's new ZR1 model running at over 100 tokens/second on WebGPU! ⚡️

Giving models access to browser APIs (like File System, Screen Capture, and more) could unlock an entirely new class of web experiences that are personalized, interactive, and run locally in a secure, sandboxed environment.

For now, try out the demo! 👇
webml-community/Zyphra-ZR1-WebGPU
  • 1 reply
·
merve 
posted an update 21 days ago
view post
Post
4425
sooo many open AI releases past week, let's summarize! 🤗
merve/april-11-releases-67fcd78be33d241c0977b9d2

multimodal
> Moonshot AI released Kimi VL Thinking, first working open-source multimodal reasoning model and Kimi VL Instruct, both 16B MoEs with 3B active params (OS)
> InternVL3 released based on Qwen2.5VL, 7 ckpts with various sizes (1B to 78B)

LLMs
> NVIDIA released Llama-3_1-Nemotron-Ultra-253B-v1 an LLM built on Llama 405B for reasoning, chat and tool use
> Agentica released DeepCoder-14B-Preview, fine-tuned version of DeepSeek-R1-Distilled-Qwen-14B on problem-test pairs, along with the compiled dataset
> Zyphra/ZR1-1.5B is a new small reasoning LLM built on R1-Distill-1.5B (OS)
> Skywork-OR1-32B-Preview is a new reasoning model by Skywork

Image Generation
> HiDream releases three new models, HiDream I1 Dev, I1 Full, and I1 fast for image generation (OS)

*OS ones have Apache 2.0 or MIT licenses
·