AI & ML interests

sharing knowledge

Recent Activity

HuggingFaceDocBuilder  updated a dataset 29 minutes ago
hf-doc-build/doc-build-dev
HuggingFaceDocBuilder  updated a dataset about 1 hour ago
hf-doc-build/doc-build
HuggingFaceDocBuilder  updated a dataset about 1 hour ago
hf-doc-build/doc-build-dev
View all activity

hf-doc-build's activity

Wauplin 
posted an update 15 days ago
view post
Post
2057
‼️ huggingface_hub's v0.30.0 is out with our biggest update of the past two years!

Full release notes: https://github.com/huggingface/huggingface_hub/releases/tag/v0.30.0.

🚀 Ready. Xet. Go!

Xet is a groundbreaking new protocol for storing large objects in Git repositories, designed to replace Git LFS. Unlike LFS, which deduplicates files, Xet operates at the chunk level—making it a game-changer for AI builders collaborating on massive models and datasets. Our Python integration is powered by [xet-core](https://github.com/huggingface/xet-core), a Rust-based package that handles all the low-level details.

You can start using Xet today by installing the optional dependency:

pip install -U huggingface_hub[hf_xet]


With that, you can seamlessly download files from Xet-enabled repositories! And don’t worry—everything remains fully backward-compatible if you’re not ready to upgrade yet.

Blog post: https://huggingface.co/blog/xet-on-the-hub
Docs: https://huggingface.co/docs/hub/en/storage-backends#xet


⚡ Inference Providers

- We’re thrilled to introduce Cerebras and Cohere as official inference providers! This expansion strengthens the Hub as the go-to entry point for running inference on open-weight models.

- Novita is now our 3rd provider to support text-to-video task after Fal.ai and Replicate.

- Centralized billing: manage your budget and set team-wide spending limits for Inference Providers! Available to all Enterprise Hub organizations.

from huggingface_hub import InferenceClient
client = InferenceClient(provider="fal-ai", bill_to="my-cool-company")
image = client.text_to_image(
    "A majestic lion in a fantasy forest",
    model="black-forest-labs/FLUX.1-schnell",
)
image.save("lion.png")


- No more timeouts when generating videos, thanks to async calls. Available right now for Fal.ai, expecting more providers to leverage the same structure very soon!
·
lysandre 
posted an update about 2 months ago
view post
Post
6276
SmolVLM-2 and SigLIP-2 are now part of transformers in dedicated releases!

They're added on top of the v4.49.0 release, and can be installed from the following tags: v4.49.0-SmolVLM-2 and v4.49.0-SigLIP-2.

This marks a new beginning for the release process of transformers. For the past five years, we've been doing monthly releases featuring many models (v4.49.0, the latest release, features 9 new architectures).

Starting with SmolVLM-2 & SigLIP2, we'll now additionally release tags supporting new models on a stable branch. These models are therefore directly available for use by installing from the tag itself. These tags will continue to be updated with fixes applied to these models.

Going forward, continue expecting software releases following semantic versioning: v4.50.0 will have ~10 new architectures compared to v4.49.0, as well as a myriad of new features, improvements and bug fixes. Accompanying these software releases, we'll release tags offering brand new models as fast as possible, to make them accessible to all immediately.
  • 1 reply
·
regisss 
posted an update 2 months ago
view post
Post
1703
Nice paper comparing the fp8 inference efficiency of Nvidia H100 and Intel Gaudi2: An Investigation of FP8 Across Accelerators for LLM Inference (2502.01070)

The conclusion is interesting: "Our findings highlight that the Gaudi 2, by leveraging FP8, achieves higher throughput-to-power efficiency during LLM inference"

One aspect of AI hardware accelerators that is often overlooked is how they consume less energy than GPUs. It's nice to see researchers starting carrying out experiments to measure this!

Gaudi3 results soon...
regisss 
posted an update 4 months ago
regisss 
posted an update 6 months ago
view post
Post
1424
Interested in performing inference with an ONNX model?⚡️

The Optimum docs about model inference with ONNX Runtime is now much clearer and simpler!

You want to deploy your favorite model on the hub but you don't know how to export it to the ONNX format? You can do it in one line of code as follows:
from optimum.onnxruntime import ORTModelForSequenceClassification

# Load the model from the hub and export it to the ONNX format
model_id = "distilbert-base-uncased-finetuned-sst-2-english"
model = ORTModelForSequenceClassification.from_pretrained(model_id, export=True)

Check out the whole guide 👉 https://huggingface.co/docs/optimum/onnxruntime/usage_guides/models
Wauplin 
posted an update 7 months ago
view post
Post
3126
What a great milestone to celebrate! The huggingface_hub library is slowly becoming a cornerstone of the Python ML ecosystem when it comes to interacting with the @huggingface Hub. It wouldn't be there without the hundreds of community contributions and feedback! No matter if you are loading a model, sharing a dataset, running remote inference or starting jobs on our infra, you are for sure using it! And this is only the beginning so give a star if you wanna follow the project 👉 https://github.com/huggingface/huggingface_hub
  • 1 reply
·
Wauplin 
posted an update 7 months ago
view post
Post
4688
🚀 Exciting News! 🚀

We've just released 𝚑𝚞𝚐𝚐𝚒𝚗𝚐𝚏𝚊𝚌𝚎_𝚑𝚞𝚋 v0.25.0 and it's packed with powerful new features and improvements!

✨ 𝗧𝗼𝗽 𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝘀:

• 📁 𝗨𝗽𝗹𝗼𝗮𝗱 𝗹𝗮𝗿𝗴𝗲 𝗳𝗼𝗹𝗱𝗲𝗿𝘀 with ease using huggingface-cli upload-large-folder. Designed for your massive models and datasets. Much recommended if you struggle to upload your Llama 70B fine-tuned model 🤡
• 🔎 𝗦𝗲𝗮𝗿𝗰𝗵 𝗔𝗣𝗜: new search filters (gated status, inference status) and fetch trending score.
• ⚡𝗜𝗻𝗳𝗲𝗿𝗲𝗻𝗰𝗲𝗖𝗹𝗶𝗲𝗻𝘁: major improvements simplifying chat completions and handling async tasks better.

We’ve also introduced tons of bug fixes and quality-of-life improvements - thanks to the awesome contributions from our community! 💪

💡 Check out the release notes: Wauplin/huggingface_hub#8

Want to try it out? Install the release with:

pip install huggingface_hub==0.25.0

  • 1 reply
·
Wauplin 
posted an update 9 months ago
view post
Post
2024
🚀 Just released version 0.24.0 of the 𝚑𝚞𝚐𝚐𝚒𝚗𝚐𝚏𝚊𝚌𝚎_𝚑𝚞𝚋 Python library!

Exciting updates include:
⚡ InferenceClient is now a drop-in replacement for OpenAI's chat completion!

✨ Support for response_format, adapter_id , truncate, and more in InferenceClient

💾 Serialization module with a save_torch_model helper that handles shared layers, sharding, naming convention, and safe serialization. Basically a condensed version of logic scattered across safetensors, transformers , accelerate

📁 Optimized HfFileSystem to avoid getting rate limited when browsing HuggingFaceFW/fineweb

🔨 HfApi & CLI improvements: prevent empty commits, create repo inside resource group, webhooks API, more options in the Search API, etc.

Check out the full release notes for more details:
Wauplin/huggingface_hub#7
👀
·
Wauplin 
posted an update 9 months ago
view post
Post
3384
🚀 I'm excited to announce that huggingface_hub's InferenceClient now supports OpenAI's Python client syntax! For developers integrating AI into their codebases, this means you can switch to open-source models with just three lines of code. Here's a quick example of how easy it is.

Why use the InferenceClient?
🔄 Seamless transition: keep your existing code structure while leveraging LLMs hosted on the Hugging Face Hub.
🤗 Direct integration: easily launch a model to run inference using our Inference Endpoint service.
🚀 Stay Updated: always be in sync with the latest Text-Generation-Inference (TGI) updates.

More details in https://huggingface.co/docs/huggingface_hub/main/en/guides/inference#openai-compatibility
·
Wauplin 
posted an update 12 months ago
view post
Post
1836
🚀 Just released version 0.23.0 of the huggingface_hub Python library!

Exciting updates include:
📁 Seamless download to local dir!
💡 Grammar and Tools in InferenceClient!
🌐 Documentation full translated to Korean!
👥 User API: get likes, upvotes, nb of repos, etc.!
🧩 Better model cards and encoding for ModelHubMixin!

Check out the full release notes for more details:
Wauplin/huggingface_hub#6
👀
Wauplin 
posted an update about 1 year ago
view post
Post
2334
🚀 Just released version 0.22.0 of the huggingface_hub Python library!

Exciting updates include:
✨ Chat-completion API in the InferenceClient!
🤖 Official inference types in InferenceClient!
🧩 Better config and tags in ModelHubMixin!
🏆 Generate model cards for your ModelHubMixin integrations!
🏎️ x3 download speed in HfFileSystem!!

Check out the full release notes for more details: Wauplin/huggingface_hub#5 👀
  • 2 replies
·
Wauplin 
posted an update about 1 year ago
view post
Post
🚀 Just released version 0.21.0 of the huggingface_hub Python library!

Exciting updates include:
🖇️ Dataclasses everywhere for improved developer experience!
💾 HfFileSystem optimizations!
🧩 PyTorchHubMixin now supports configs and safetensors!
audio-to-audio supported in the InferenceClient!
📚 Translated docs in Simplified Chinese and French!
💔 Breaking changes: simplified API for listing models and datasets!

Check out the full release notes for more details: Wauplin/huggingface_hub#4 🤖💻
·