Hugging Face Internal Testing Organization

company
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

linoytsΒ  updated a model about 20 hours ago
hf-internal-testing/tiny-hidream-i1-pipe
linoytsΒ  published a model about 21 hours ago
hf-internal-testing/tiny-hidream-i1-pipe
View all activity

hf-internal-testing's activity

tomaarsenΒ 
posted an update 12 minutes ago
view post
Post
10
I just released Sentence Transformers v4.1; featuring ONNX and OpenVINO backends for rerankers offering 2-3x speedups and improved hard negatives mining which helps prepare stronger training datasets. Details:

🏎️ ONNX, OpenVINO, Optimization, Quantization
- I've added ONNX and OpenVINO support with just one extra argument: "backend" when loading the CrossEncoder reranker, e.g.: CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2", backend="onnx")
- The export_optimized_onnx_model, export_dynamic_quantized_onnx_model, and export_static_quantized_openvino_model functions now work with CrossEncoder rerankers, allowing you to optimize (e.g. fusions, gelu approximations, etc.) or quantize (int8 weights) rerankers.
- I've uploaded ~340 ONNX & OpenVINO models for all existing models under the cross-encoder Hugging Face organization. You can use these without having to export when loading.

⛏ Improved Hard Negatives Mining
- Added 'absolute_margin' and 'relative_margin' arguments to mine_hard_negatives.
- absolute_margin ensures that sim(query, negative) < sim(query, positive) - absolute_margin, i.e. an absolute margin between the negative & positive similarities.
- relative_margin ensures that sim(query, negative) < sim(query, positive) * (1 - relative_margin), i.e. a relative margin between the negative & positive similarities.
- Inspired by the excellent NV-Retriever paper from NVIDIA.

And several other small improvements. Check out the full release notes here: https://github.com/UKPLab/sentence-transformers/releases/tag/v4.1.0

With this release, I introduce near-feature parity between the SentenceTransformer embedding & CrossEncoder reranker models, which I've wanted to do for quite some time! With rerankers very strongly supported now, it's time to look forward to other useful architectures!

WauplinΒ 
posted an update 15 days ago
view post
Post
2055
‼️ huggingface_hub's v0.30.0 is out with our biggest update of the past two years!

Full release notes: https://github.com/huggingface/huggingface_hub/releases/tag/v0.30.0.

πŸš€ Ready. Xet. Go!

Xet is a groundbreaking new protocol for storing large objects in Git repositories, designed to replace Git LFS. Unlike LFS, which deduplicates files, Xet operates at the chunk levelβ€”making it a game-changer for AI builders collaborating on massive models and datasets. Our Python integration is powered by [xet-core](https://github.com/huggingface/xet-core), a Rust-based package that handles all the low-level details.

You can start using Xet today by installing the optional dependency:

pip install -U huggingface_hub[hf_xet]


With that, you can seamlessly download files from Xet-enabled repositories! And don’t worryβ€”everything remains fully backward-compatible if you’re not ready to upgrade yet.

Blog post: https://huggingface.co/blog/xet-on-the-hub
Docs: https://huggingface.co/docs/hub/en/storage-backends#xet


⚑ Inference Providers

- We’re thrilled to introduce Cerebras and Cohere as official inference providers! This expansion strengthens the Hub as the go-to entry point for running inference on open-weight models.

- Novita is now our 3rd provider to support text-to-video task after Fal.ai and Replicate.

- Centralized billing: manage your budget and set team-wide spending limits for Inference Providers! Available to all Enterprise Hub organizations.

from huggingface_hub import InferenceClient
client = InferenceClient(provider="fal-ai", bill_to="my-cool-company")
image = client.text_to_image(
    "A majestic lion in a fantasy forest",
    model="black-forest-labs/FLUX.1-schnell",
)
image.save("lion.png")


- No more timeouts when generating videos, thanks to async calls. Available right now for Fal.ai, expecting more providers to leverage the same structure very soon!
Β·
tomaarsenΒ 
posted an update 20 days ago
view post
Post
2411
‼️Sentence Transformers v4.0 is out! You can now train and finetune reranker models with multi-GPU training, bf16 support, loss logging, callbacks & much more. I also prove that finetuning on your domain helps much more than you might think.

1️⃣ Reranker Training Refactor
Reranker models can now be trained using an extensive trainer with a lot of powerful features:
- MultiGPU Training (Data Parallelism (DP) and Distributed Data Parallelism (DDP))
- bf16 training support; loss logging
- Evaluation datasets + evaluation loss
- Improved callback support + an excellent Weights & Biases integration
- Gradient checkpointing, gradient accumulation
- Model card generation
- Resuming from a training checkpoint without performance loss
- Hyperparameter Optimization
and much more!

Read my detailed blogpost to learn about the components that make up this new training approach: https://huggingface.co/blog/train-reranker
Notably, the release is fully backwards compatible: all deprecations are soft, meaning that they still work but emit a warning informing you how to upgrade.

2️⃣ New Reranker Losses
- 11 new losses:
- 2 traditional losses: BinaryCrossEntropy and CrossEntropy
- 2 distillation losses: MSE and MarginMSE
- 2 in-batch negatives losses: MNRL (a.k.a. InfoNCE) and CMNRL
- 5 learning to rank losses: Lambda, p-ListMLE, ListNet, RankNet, ListMLE

3️⃣ New Reranker Documentation
- New Training Overview, Loss Overview, API Reference docs
- 5 new, 1 refactored training examples docs pages
- 13 new, 6 refactored training scripts
- Migration guides (2.x -> 3.x, 3.x -> 4.x)

4️⃣ Blogpost
Alongside the release, I've written a blogpost where I finetune ModernBERT on a generic question-answer dataset. My finetunes easily outperform all general-purpose reranker models, even models 4x as big. Finetuning on your domain is definitely worth it: https://huggingface.co/blog/train-reranker

See the full release notes here: https://github.com/UKPLab/sentence-transformers/releases/v4.0.1
lewtunΒ 
posted an update about 1 month ago
view post
Post
2357
Introducing OlympicCoder: a series of open reasoning models that can solve olympiad-level programming problems πŸ§‘β€πŸ’»

- 7B open-r1/OlympicCoder-7B
- 32B open-r1/OlympicCoder-32B

We find that OlympicCoder models outperform Claude 3.7 Sonnet, as well as others over 100x larger πŸ’ͺ

Together with the models, we are releasing:

πŸ“ŠCodeForces-CoTs: new dataset of code problems from the most popular competitive coding platform, with R1 traces in C++ and Python open-r1/codeforces-cots

πŸ† IOI'2024: a new benchmark of VERY hard programming problems where even frontier models struggle to match human performance open-r1/ioi

For links to the models and datasets, check out our latest progress report from Open R1: https://huggingface.co/blog/open-r1/update-3
  • 1 reply
Β·
tomaarsenΒ 
posted an update about 1 month ago
view post
Post
6651
An assembly of 18 European companies, labs, and universities have banded together to launch πŸ‡ͺπŸ‡Ί EuroBERT! It's a state-of-the-art multilingual encoder for 15 European languages, designed to be finetuned for retrieval, classification, etc.

πŸ‡ͺπŸ‡Ί 15 Languages: English, French, German, Spanish, Chinese, Italian, Russian, Polish, Portuguese, Japanese, Vietnamese, Dutch, Arabic, Turkish, Hindi
3️⃣ 3 model sizes: 210M, 610M, and 2.1B parameters - very very useful sizes in my opinion
➑️ Sequence length of 8192 tokens! Nice to see these higher sequence lengths for encoders becoming more common.
βš™οΈ Architecture based on Llama, but with bi-directional (non-causal) attention to turn it into an encoder. Flash Attention 2 is supported.
πŸ”₯ A new Pareto frontier (stronger *and* smaller) for multilingual encoder models
πŸ“Š Evaluated against mDeBERTa, mGTE, XLM-RoBERTa for Retrieval, Classification, and Regression (after finetuning for each task separately): EuroBERT punches way above its weight.
πŸ“ Detailed paper with all details, incl. data: FineWeb for English and CulturaX for multilingual data, The Stack v2 and Proof-Pile-2 for code.

Check out the release blogpost here: https://huggingface.co/blog/EuroBERT/release
* EuroBERT/EuroBERT-210m
* EuroBERT/EuroBERT-610m
* EuroBERT/EuroBERT-2.1B

The next step is for researchers to build upon the 3 EuroBERT base models and publish strong retrieval, zero-shot classification, etc. models for all to use. I'm very much looking forward to it!
  • 1 reply
Β·
albertvillanovaΒ 
posted an update about 1 month ago
view post
Post
3906
πŸš€ New smolagents update: Safer Local Python Execution! 🦾🐍

With the latest release, we've added security checks to the local Python interpreter: every evaluation is now analyzed for dangerous builtins, modules, and functions. πŸ”’

Here's why this matters & what you need to know! πŸ§΅πŸ‘‡

1️⃣ Why is local execution risky? ⚠️
AI agents that run arbitrary Python code can unintentionally (or maliciously) access system files, run unsafe commands, or exfiltrate data.

2️⃣ New Safety Layer in smolagents πŸ›‘οΈ
We now inspect every return value during execution:
βœ… Allowed: Safe built-in types (e.g., numbers, strings, lists)
β›” Blocked: Dangerous functions/modules (e.g., os.system, subprocess, exec, shutil)

3️⃣ Immediate Benefits πŸ’‘
- Prevent agents from accessing unsafe builtins
- Block unauthorized file or network access
- Reduce accidental security vulnerabilities

4️⃣ Security Disclaimer ⚠️
🚨 Despite these improvements, local Python execution is NEVER 100% safe. 🚨
If you need true isolation, use a remote sandboxed executor like Docker or E2B.

5️⃣ The Best Practice: Use Sandboxed Execution πŸ”
For production-grade AI agents, we strongly recommend running code in a Docker or E2B sandbox to ensure complete isolation.

6️⃣ Upgrade Now & Stay Safe! πŸš€
Check out the latest smolagents release and start building safer AI agents today.

πŸ”— https://github.com/huggingface/smolagents

What security measures do you take when running AI-generated code? Let’s discuss! πŸ‘‡

#AI #smolagents #Python #Security
  • 2 replies
Β·
albertvillanovaΒ 
posted an update about 1 month ago
view post
Post
3891
πŸš€ Big news for AI agents! With the latest release of smolagents, you can now securely execute Python code in sandboxed Docker or E2B environments. πŸ¦ΎπŸ”’

Here's why this is a game-changer for agent-based systems: πŸ§΅πŸ‘‡

1️⃣ Security First πŸ”
Running AI agents in unrestricted Python environments is risky! With sandboxing, your agents are isolated, preventing unintended file access, network abuse, or system modifications.

2️⃣ Deterministic & Reproducible Runs πŸ“¦
By running agents in containerized environments, you ensure that every execution happens in a controlled and predictable settingβ€”no more environment mismatches or dependency issues!

3️⃣ Resource Control & Limits 🚦
Docker and E2B allow you to enforce CPU, memory, and execution time limits, so rogue or inefficient agents don’t spiral out of control.

4️⃣ Safer Code Execution in Production 🏭
Deploy AI agents confidently, knowing that any generated code runs in an ephemeral, isolated environment, protecting your host machine and infrastructure.

5️⃣ Easy to Integrate πŸ› οΈ
With smolagents, you can simply configure your agent to use Docker or E2B as its execution backendβ€”no need for complex security setups!

6️⃣ Perfect for Autonomous AI Agents πŸ€–
If your AI agents generate and execute code dynamically, this is a must-have to avoid security pitfalls while enabling advanced automation.

⚑ Get started now: https://github.com/huggingface/smolagents

What will you build with smolagents? Let us know! πŸš€πŸ’‘