LiteRT Community (FKA TFLite)

community

AI & ML interests

AI for Mobile, Web, and Embedded

Recent Activity

litert-community's activity

Jay

1
#1 opened 12 days ago by
triodigi

Error

3
#1 opened 14 days ago by
mabramson1
prithivMLmods 
posted an update 15 days ago
view post
Post
5390
OpenAI, Google, Hugging Face, and Anthropic have released guides and courses on building agents, prompting techniques, scaling AI use cases, and more. Below are 10+ minimalistic guides and courses that may help you in your progress. 📖

⤷ Agents Companion : https://www.kaggle.com/whitepaper-agent-companion
⤷ Building Effective Agents : https://www.anthropic.com/engineering/building-effective-agents
⤷ Guide to building agents by OpenAI : https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
⤷ Prompt engineering by Google : https://www.kaggle.com/whitepaper-prompt-engineering
⤷ Google: 601 real-world gen AI use cases : https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
⤷ Prompt engineering by IBM : https://www.ibm.com/think/topics/prompt-engineering-guide
⤷ Prompt Engineering by Anthropic : https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
⤷ Scaling AI use cases : https://cdn.openai.com/business-guides-and-resources/identifying-and-scaling-ai-use-cases.pdf
⤷ Prompting Guide 101 : https://services.google.com/fh/files/misc/gemini-for-google-workspace-prompting-guide-101.pdf
⤷ AI in the Enterprise by OpenAI : https://cdn.openai.com/business-guides-and-resources/ai-in-the-enterprise.pdf

by HF🤗 :
⤷ AI Agents Course by Huggingface : https://huggingface.co/learn/agents-course/unit0/introduction
⤷ Smol-agents Docs : https://huggingface.co/docs/smolagents/en/tutorials/building_good_agents
⤷ MCP Course by Huggingface : https://huggingface.co/learn/mcp-course/unit0/introduction
⤷ Other Course (LLM, Computer Vision, Deep RL, Audio, Diffusion, Cookbooks, etc..) : https://huggingface.co/learn
  • 2 replies
·
prithivMLmods 
posted an update 16 days ago
view post
Post
2236
Just made a demo for Cosmos-Reason1, a physical AI model that understands physical common sense and generates appropriate embodied decisions in natural language through long chain-of-thought reasoning. Also added video understanding support to it. 🤗🚀

✦ Try the demo here : prithivMLmods/DocScope-R1

⤷ Cosmos-Reason1-7B : nvidia/Cosmos-Reason1-7B
⤷ docscopeOCR-7B-050425-exp : prithivMLmods/docscopeOCR-7B-050425-exp
⤷ Captioner-Relaxed : Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

⤷ GitHub :
https://github.com/PRITHIVSAKTHIUR/Cosmos-x-DocScope
https://github.com/PRITHIVSAKTHIUR/Nvidia-Cosmos-Reason1-Demo.

To know more about it, visit the model card of the respective model. !!
prithivMLmods 
posted an update 25 days ago
view post
Post
2332
Got access to Google's all-new Gemini Diffusion a state-of-the-art text diffusion model. It delivers the performance of Gemini 2.0 Flash-Lite at 5x the speed, generating over 1000 tokens in a fraction of a second and producing impressive results. Below are some initial outputs generated using the model. ♊🔥

Gemini Diffusion Playground ✦ : https://deepmind.google.com/frontiers/gemini-diffusion

Get Access Here : https://docs.google.com/forms/d/1aLm6J13tAkq4v4qwGR3z35W2qWy7mHiiA0wGEpecooo/viewform?edit_requested=true

🔗 To know more, visit: https://deepmind.google/models/gemini-diffusion/
  • 1 reply
·
prithivMLmods 
posted an update 26 days ago
view post
Post
2319
The more optimized explicit content filters with lightweight 𝙜𝙪𝙖𝙧𝙙 models trained based on siglip2 patch16 512 and vit patch16 224 for illustration and explicit content classification for content moderation in social media, forums, and parental controls for safer browsing environments. this version fixes the issues in the previous release, which lacked sufficient resources. 🚀

⤷ Models :
→ siglip2 mini explicit content : prithivMLmods/siglip2-mini-explicit-content [recommended]
→ vit mini explicit content : prithivMLmods/vit-mini-explicit-content

⤷ Building image safety-guard models : strangerguardhf

⤷ Datasets :
→ nsfw multidomain classification : strangerguardhf/NSFW-MultiDomain-Classification
→ nsfw multidomain classification v2.0 : strangerguardhf/NSFW-MultiDomain-Classification-v2.0

⤷ Collection :
→ Updated Versions [05192025] : prithivMLmods/explicit-content-filters-682aaa4733e378561925ca2b
→ Previous Versions : prithivMLmods/siglip2-content-filters-042025-final-680fe4aa1a9d589bf2c915ff

Find a collections inside the collection.👆

To know more about it, visit the model card of the respective model.
  • 1 reply
·