LLHF

community
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

llhf's activity

clefourrier 
posted an update 1 day ago
view post
Post
595
Saying Claude 4 is "the best coding model in the world" from the SWEBench scores is super misleading, and here is why:

If you look at the announcement table, their model has the best scores, but... if you look at the very bottom, in font 4, you'll see that the metric they report is actually not the same metric as the one used for the other models!


Comparing "pass@1 averaged 10 times" to "normal pass@1" is like grading one student by allowing them to take the test 10 times and averaging question scores, when the other students only get one chance at grading.

The first way to grade (avg@10) is actually quite good statistically, much better than what model creators usually report, because models tend to be quite inconsistent - sometimes good, sometimes bad...
But! You want to do it for all models then, and report with error bars.
The issue is that, if you do... well, it's going to be harder to say your model is the best, because the error bars will overlap between models, by a lot.

Also, you'll see that 2 numbers are reported: the first one is using avg@10 (what I explained above), and the second, highest one is using this plus many other tricks:
- test time compute (so having the model generate a tree of answers and selecting the best as you go, more or less)
- removing the times when the model breaks the tests
- and using another model to select the most promising solution!
You can't really say it's better than the rest, mostly because it's **way less efficient** to achieve a similar result.

It's honestly a bit sad because from user reports, the model sounds good - however, this announcement is overblown numbers wise, and I'm quite sure it's more a problem of "too much marketing" than of "bad science"

Another thing which makes the comparison invalid is the complete absence of open source from the report - don't think they are aware of DeepSeek/ Qwen/The new mistral for code/and all the cool specialised models found on the hub?
  • 1 reply
·
joaogante 
posted an update 4 days ago
view post
Post
356
Let's go! Custom generation code has landed in transformers 🚀

Have you designed a new cool KV cache? Maybe you're comparing new test-time compute ideas you've been researching? Have you found a way to do diffusion with existing models? You can now easily share your findings with the community with custom generation code, sharing the well-known generate interface 🤓

In a nutshell, we have expanded the support of custom modeling code on the Hub with *model-agnostic* custom generation code. Write for one model, reuse with any model -- hopefully, this will democratize access to new generation ideas 🫡

As a creator, you gain the ability to get your ideas in transformers with minimal effort. You'll also have access to all Hub features: a landing page for your creation, discussions, usage metrics, ... 🤓

💎 Resources 💎
- docs: https://huggingface.co/docs/transformers/generation_strategies#custom-decoding-methods
- minimal example: transformers-community/custom_generate_example
- discussion: transformers-community/support#10
reach-vb 
posted an update 5 days ago
view post
Post
3011
hey hey @mradermacher - VB from Hugging Face here, we'd love to onboard you over to our optimised xet backend! 💥

as you know we're in the process of upgrading our storage backend to xet (which helps us scale and offer blazingly fast upload/ download speeds too): https://huggingface.co/blog/xet-on-the-hub and now that we are certain that the backend can scale with even big models like Llama 4/ Qwen 3 - we;re moving to the next phase of inviting impactful orgs and users on the hub over as you are a big part of the open source ML community - we would love to onboard you next and create some excitement about it in the community too!

in terms of actual steps - it should be as simple as one of the org admins to join hf.co/join/xet - we'll take care of the rest.

p.s. you'd need to have a the latest hf_xet version of huggingface_hub lib but everything else should be the same: https://huggingface.co/docs/hub/storage-backends#using-xet-storage

p.p.s. this is fully backwards compatible so everything will work as it should! 🤗
·
clefourrier 
posted an update 6 days ago
view post
Post
471
Always surprised that so few people actually read the FineTasks blog, on
✨how to select training evals with the highest signal✨

If you're serious about training models without wasting compute on shitty runs, you absolutely should read it!!

An high signal eval actually tells you precisely, during training, how wel & what your model is learning, allowing you to discard the bad runs/bad samplings/...!

The blog covers in depth prompt choice, metrics, dataset, across languages/capabilities, and my fave section is "which properties should evals have"👌
(to know on your use case how to select the best evals for you)

Blog: HuggingFaceFW/blogpost-fine-tasks
  • 2 replies
·
Xenova 
posted an update 26 days ago
victor 
posted an update about 1 month ago
view post
Post
4055
DIA TTS is just amazing - please share your funniest gens (here is mine) 😂
nari-labs/Dia-1.6B
philschmid 
posted an update about 1 month ago
view post
Post
2760
Gemini 2.5 Flash is here! We excited launch our first hybrid reasoning Gemini model. In Flash 2.5 developer can turn thinking off.

**TL;DR:**
- 🧠 Controllable "Thinking" with thinking budget with up to 24k token
- 🌌 1 Million multimodal input context for text, image, video, audio, and pdf
- 🛠️ Function calling, structured output, google search & code execution.
- 🏦 $0.15 1M input tokens; $0.6 or $3.5 (thinking on) per million output tokens (thinking tokens are billed as output tokens)
- 💡 Knowledge cut of January 2025
- 🚀 Rate limits - Free 10 RPM 500 req/day
- 🏅Outperforms 2.0 Flash on every benchmark

Try it ⬇️
https://aistudio.google.com/prompts/new_chat?model=gemini-2.5-flash-preview-04-17
  • 1 reply
·
Xenova 
posted an update about 1 month ago
view post
Post
2602
Reasoning models like o3 and o4-mini are advancing faster than ever, but imagine what will be possible when they can run locally in your browser! 🤯

Well, with 🤗 Transformers.js, you can do just that! Here's Zyphra's new ZR1 model running at over 100 tokens/second on WebGPU! ⚡️

Giving models access to browser APIs (like File System, Screen Capture, and more) could unlock an entirely new class of web experiences that are personalized, interactive, and run locally in a secure, sandboxed environment.

For now, try out the demo! 👇
webml-community/Zyphra-ZR1-WebGPU
  • 1 reply
·
philschmid 
posted an update 2 months ago
view post
Post
3095
Gemini 2.5 Pro, thinking by default! We excited launch our best Gemini model for reasoning, multimodal and coding yet! #1 on LMSYS, Humanity’s Last Exam, AIME and GPQA and more!

TL;DR:
- 💻 Best Gemini coding model yet, particularly for web development (excels on LiveCodeBench).
- 🧠 Default "Thinking" with up to 64k token output
- 🌌 1 Million multimodal input context for text, image, video, audio, and pdf
- 🛠️ Function calling, structured output, google search & code execution.
- 🏆  #1 on LMArena & sota on AIME, GPQA, Humanity's Last Exam
- 💡 Knowledge cut of January 2025
- 🤗 Available for free as Experimental in AI Studio, Gemini API & Gemini APP
- 🚀 Rate limits - Free 2 RPM 50 req/day

Try it ⬇️

https://aistudio.google.com/?model=gemini-2.5-pro-exp-03-25
·
eliebak 
posted an update 2 months ago
view post
Post
1771
Google just dropped an exciting technical report for the brand-new Gemma3 model! 🚀 Here are my personal notes highlighting the most intriguing architectural innovations, design choices, and insights from this release:

1) Architecture choices:
> No more softcaping, replace by QK-Norm
> Both Pre AND Post Norm
> Wider MLP than Qwen2.5, ~ same depth
> SWA with 5:1 and 1024 (very small and cool ablation on the paper!)
> No MLA to save KV cache, SWA do the job!

2) Long context
> Only increase the rope in the global layer (to 1M)
> Confirmation that it's harder to do long context for smol models, no 128k for the 1B
> Pretrained with 32k context? seems very high
> No yarn nor llama3 like rope extension

3) Distillation
> Only keep te first 256 logits for the teacher
> Ablation on the teacher gap (tl;dr you need some "patience" to see that using a small teacher is better)
> On policy distillation yeahh (by
@agarwl_
et al), not sure if the teacher gap behave the same here, curious if someone have more info?

4) Others
> Checkpoint with QAT, that's very cool
> RL using improve version of BOND, WARM/WARP good excuse to look at
@ramealexandre
papers
> Only use Zero3, no TP/PP if i understand correctly ?
> Training budget relatively similar than gemma2
  • 1 reply
·
clefourrier 
posted an update 2 months ago
view post
Post
2473
Gemma3 family is out! Reading the tech report, and this section was really interesting to me from a methods/scientific fairness pov.

Instead of doing over-hyped comparisons, they clearly state that **results are reported in a setup which is advantageous to their models**.
(Which everybody does, but people usually don't say)

For a tech report, it makes a lot of sense to report model performance when used optimally!
On leaderboards on the other hand, comparison will be apples to apples, but in a potentially unoptimal way for a given model family (like some user interact sub-optimally with models)

Also contains a cool section (6) on training data memorization rate too! Important to see if your model will output the training data it has seen as such: always an issue for privacy/copyright/... but also very much for evaluation!

Because if your model knows its evals by heart, you're not testing for generalization.
Xenova 
posted an update 4 months ago
view post
Post
13351
We did it. Kokoro TTS (v1.0) can now run 100% locally in your browser w/ WebGPU acceleration. Real-time text-to-speech without a server. ⚡️

Generate 10 seconds of speech in ~1 second for $0.

What will you build? 🔥
webml-community/kokoro-webgpu

The most difficult part was getting the model running in the first place, but the next steps are simple:
✂️ Implement sentence splitting, allowing for streamed responses
🌍 Multilingual support (only phonemization left)

Who wants to help?
·