We prepared the 2025 version of the HF AI Timeline Grid, highlighting open vs API-based model releases, and allowing you to browse and filter by access, modality, and release type!
1️⃣ Q1 — Learning to Reason Deepseek not only releases a top-notch reasoning model, but shows how to train them and compete with closed frontier models. OpenAI debuts Deep Research.
Significant milestones: DeepSeek R1 & R1-Zero, Qwen 2.5 VL, OpenAI Deep Research, Gemini 2.5 Pro (experimental)
2️⃣ Q2 — Multimodality and Coding More LLMs embrace multimodality by default, and there's a surge in coding agents. Strong vision, audio, and generative models emerge.
Significant milestones: Llama 4, Qwen 3, Imagen 4, OpenAI Codex, Google Jules, Claude 4
3️⃣ Q3 — "Gold" rush, OpenAI opens up, the community goes bananas Flagship models get gold in Math olympiads and hard benchmarks. OpenAI releases strong open source models and Google releases the much anticipated nano-banana for image generation and editing. Agentic workflows become commonplace.
Significant milestones: Gemini and OpenAI IMO Gold, gpt-oss, Gemini 2.5 Flash Image, Grok 4, Claude Sonnet 4.5
4️⃣ Q4 — Mistral returns, leaderboard hill-climbing Mistral is back with updated model families. All labs release impressive models to wrap up the year!
Significant milestones: Claude Opus 4.5, DeepSeek Math V2, FLUX 2, GPT 5.1, Kimi K2 Thinking, Nano Banana Pro, GLM 4.7, Gemini 3, Mistral 3, MiniMax M2.1 🤯
Qwen-Image-Edit-2511-Object-Remover is an adapter (LoRA) developed for Qwen’s Qwen-Image-Edit-2511 image-to-image model. It is specifically designed for precise object removal from images.
Qwen-Image-Edit-2511-Object-Adder is an adapter (LoRA) developed for Qwen’s Qwen-Image-Edit-2511 image-to-image model. It is specifically designed for precise object addition to images.
Update: TRELLIS.2 (Text to 3D, Image to 3D) Gradio with Rerun Embedded demo with improved visualization of the 3D model previewer is now available on Hugging Face. Generate assets and view them in the 3D viewer, powered and streamlined with Microsoft’s TRELLIS.2 and Tongyi-MAI’s Z-Image-Turbo models.
Introducing the Qwen-Image-Edit-2511-LoRAs-Fast demo, featuring image property comparison and contrast, built on top of Gradio and the combined Rerun SDK. It supports single and multi-image edits with existing LoRAs that are lazily loaded. (Note: This is still an experimental Space for Qwen-Image-Edit-2511.)
Introducing demos for new SOTA models from AI2: SAGE-MM (Smart Any-Horizon Agents for Long-Video Reasoning) and Molmo-2, an open vision-language model that supports multi-image (QA and pointing) and video (QA, pointing, and tracking). The respective demo-related collections are listed below. 🎃🔥
Introducing TRELLIS.2 Text-to-3D. The demo for the TRELLIS.2-4B (Image-to-3D) model is streamlined with the Z-Image Turbo image generation model to enable Text-to-3D functionality. There is no need for input assets, making a small leap forward for ideation. Optionally, it also includes default support for Image-to-3D inference using direct image assets. Find the demo and related collections below... 🤗🔥
Demo for Molmo2 on Hugging Face is live now, including Single/Multi-Image VQA, Visual Pointing/Grounding, Video VQA, and Video Point Tracking. Find the demo and related collections below. 🔥🤗
Introducing the Z Image Turbo LoRA DLC App, a gallery space for plug-and-play Z-Image-Turbo LoRAs. It features a curated collection of impressive LoRAs for generating high-quality images. By default, it runs on the base model. Simply choose a LoRA, type your prompt, and generate images. You can find the app and more details below. 🤗🧪
Muon has gone from an experiment to a mainstream optimizer, but does it hold up for fine‑tuning? We ran head‑to‑head tests on Qwen3‑4B (10k+ high‑quality instruction rows) to find out.
Short story: Pure Muon converged fastest at the start, but its gradient‑norm spikes made training unstable. MuonClip (Kimi K2’s clipping) stabilizes long pretraining runs, yet in our small‑scale fine‑tune it underperformed, lower token accuracy and slower convergence. The winner was the hybrid: Muon for 2D layers + AdamW for 1D layers. It delivered the best balance of stability and final performance and even beat vanilla AdamW.
Takeaway: for small-scale fine-tuning, hybrid = practical and reliable.
Next Step: scale to larger models/datasets to see if Muon’s spikes become catastrophic or if clipping wins out.
Introducing the D.Markdown Experimental Models, Proxima and Epsilon OCR models, built on top of Qwen3-VL and Qwen2.5-VL respectively. Proxima is optimized for Markdown generation and is capable of embedding inline programming code snippets and generating rich nodes such as HTML, XML, JSON, and YAML. Epsilon is optimized for reconstructing complex layouts including tables, forms, and mathematical content. 🌌✨
Try CUA GUI Operator 🖥️ Space, the demo of some interesting multimodal ultra-compact Computer Use Agent (CUA) models in a single app, including Fara-7B, UI-TARS-1.5-7B, and Holo models, to perform GUI localization tasks.
I have planned to add Chrome sandboxes to streamline it and turn it into a browser based CUA multimodal tool, which will be added to the same space soon.
To know more about it, visit the app page or the respective model page!
One speech model with seven voices, streamlined with multimodal capabilities for vision tasks. Performs vision(image-text) to audio inference with Qwen2.5-VL + VibeVoice-Realtime-0.5B. Vision to VibeVoice (EN) - The demo is live. 🗣️🔥
Excited to share that I've joined the Hugging Face Fellows program! 🤗
Looking forward to contributing to & working more closely with the open-source ecosystem - huge thanks to everyone who's supported me on this journey! 🚀
strangerzonehf [HF] Community / Organization Page, which is maintained by me, has reached the Top 10 Developer Pages ranking at 6th place, contributing 3.4% in the calendar cycle from August 2024 to August 2025. It is also the only South Asia / Indian page in the list. I could not be more proud to be doing things for the community. ❤️🤗
Introducing the Super-OCRs Demo, a comparison of state-of-the-art multimodal OCR VLMs, including HunyuanOCR, DeepSeekOCR, Dots, and Nanonets in one space for performing OCR, rendering LaTeX and Markdown, and visual grounding (layout). Find the related Spaces and models below.🤗🔥
I am now being charged for paused and unstarted spaces out of the blue. I think this is it, folks. o7
The unstarted spaces I can get behind. I would've appreciated a warning email first, but whatever. However, every time I restart the active usage goes up, despite all of my spaces being moved to CPU (free), and being paused.