AI & ML interests

None defined yet.

Recent Activity

Articles

burtenshaw 
posted an update 2 days ago
view post
Post
2183
The open source AI community is just made of people who are passionate and care about their work. So we thought it would be cool to share our favourite icons of the community with a fun award.

Winners get free Hugging Face Pro Subscriptions, Merchandise, or compute credits for the hub.

🔗 Follow and nominate here: community-spotlight

This is a new initiative to recognise and celebrate the incredible work being done by community members. It's all about inspiring more collaboration and innovation in the world of machine learning and AI.

They're highlighting contributors in four key areas:
- model creators: building and sharing innovative and state-of-the-art models.
- educators: sharing knowledge through posts, articles, demos, and events.
- tool builders: creating the libraries, frameworks, and applications that we all use.
- community champions: supporting and mentoring others in forums.

Know someone who deserves recognition? Nominate them by opening a post in the Hugging Face community forum.
  • 1 reply
·
davanstrien 
posted an update 4 days ago
view post
Post
301
I fine-tuned a smol VLM to generate specialized art history metadata!

davanstrien/iconclass-vlm: Qwen2.5-VL-3B trained using SFT to generate ICONCLASS codes (think Dewey Decimal for art!)

Trained with TRL + HF Jobs - single UV script, no GPU needed!

Space to explore predictions on a test set: davanstrien/iconclass-predictions

Blog soon!
eliebak 
posted an update 5 days ago
view post
Post
2848
Super excited to announce that our research team at Hugging Face will be doing an AMA on reddit r/LocalLLaMA.

Come ask any questions to the team behind SmolLM, FineWeb and more! And who knows, maybe there’ll be a shiny new release to talk about?

Thursday 4th September, 8AM-11AM PST 🤗

science
eliebak 
posted an update 14 days ago
view post
Post
534
Motif 2.6B tech report is pretty insane, first time i see a model with differential attention and polynorm trained at scale!

> It's trained on 2.5T of token, with a "data mixture schedule" to continuously adjust the mixture over training.
> They use WSD with a "Simple moving average" averaging the last 6 ckpt every 8B token.
> They trained on Finemath, Fineweb2, DCLM, TxT360.
> Lot of details in the finetuning data they used, for instance they used EvolKit and did some "dataset fusion" to have more compressed knowledge into the data.
> They mention they also tried Normalized GPT, QK-Norm and Cross Layer Attention.

Motif-Technologies/Motif-2.6B
BrigitteTousi 
posted an update 27 days ago
BrigitteTousi 
posted an update about 1 month ago
view post
Post
517
New interactive viz from AI World showing OpenAI's new open model gpt-oss-120b breaking into the top 50 most liked models of all time on the Hub in under a day! ☄️☄️☄️
yjernite 
posted an update about 1 month ago
view post
Post
4118
𝗙𝗶𝗿𝘀𝘁 𝗚𝗣𝗔𝗜 𝗠𝗼𝗱𝗲𝗹 𝘄𝗶𝘁𝗵 𝗘𝗨 𝗗𝗮𝘁𝗮 𝗧𝗿𝗮𝗻𝘀𝗽𝗮𝗿𝗲𝗻𝗰𝘆 𝗧𝗲𝗺𝗽𝗹𝗮𝘁𝗲? 🇪🇺

With the release of the EU data transparency template this week, we finally got to see one of the most meaningful artifacts to come out of the AI Act implementation so far (haven't you heard? AI's all about the data! 📊📚)

The impact of the template will depend on how effectively it establishes a minimum meaningful transparency standard for companies that don't otherwise offer any transparency into their handling of e.g. personal data or (anti?-)competitive practices in commercial licensing - we'll see how those play out as new models are released after August 2nd 👀


In the meantime, I wanted to see how the template works for a fully open-source + commercially viable model, so I filled it out for the SmolLM3 - which my colleagues at Hugging Face earlier this month 🤗 ICYMI, it's fully open-source with 3B parameters and performance matching the best similar-size models (I've switched all my local apps from Qwen3 to it, you should too 💡)

Verdict: congrats to the European Commission AI Office for making it so straightforward! Fully open and transparent models remain a cornerstone of informed regulation and governance, but the different organizational needs of their developers aren't always properly accounted for in new regulation. In this case, it took me all of two hours to fill out and publish the template (including reading the guidelines) - so kudos for making it feasible for smaller and distributed organizations 🙌 Definitely a step forward for transparency 🔍

To learn more have a look at:

- The SmolLM3 model: HuggingFaceTB/SmolLM3-3B
- Its filled out Public Summary of Training Content: hfmlsoc/smollm3-eu-data-transparency
- And if you're interested, some previous remarks on regulatory minimum meaningful standards for data disclosure: https://huggingface.co/blog/yjernite/naiac-data-transparency
BrigitteTousi 
posted an update about 1 month ago
view post
Post
581
This is what Hugging Face is all about. We want everyone, hobbyists, researchers and industry alike, to be able to contribute to AI because everyone is affected by it. Kudos to HF's @irenesolaiman for spreading the word!🔥🤗
andito 
posted an update about 2 months ago
view post
Post
2840
Many VLMs claim to process hours of video. But can they follow the story?🤔
Today, we introduce TimeScope: The benchmark that separates true temporal understanding from marketing hype. Let's see how much VLMs really understand!⏳

We test three skills that matter for real-world use:
🔎 Localized Retrieval: Find a specific action.
🧩 Information Synthesis: Piece together scattered clues.
🏃 Fine-Grained Perception: Analyze detailed motion (e.g., count how many times a person swings an axe).

The results are in, and they're revealing. Only Gemini 2.5 pro handles 1-hour-long videos.
Performance drops sharply with duration, proving that long video understanding is still challenging. We've found the breaking points—now the community can start fixing them.📈

Want to learn more? TimeScope is 100% open-source. Benchmark your model and help us build the next generation of video AI.

📖 Blog:
https://huggingface.co/blog/timescope-video-lmm-benchmark
👩‍💻 Leaderboard & Demo: Apollo-LMMs/TimeScope
📊 Dataset: Apollo-LMMs/TimeScope
⚙️ Eval Code: https://github.com/EvolvingLMMs-Lab/lmms-eval
eliebak 
posted an update about 2 months ago
view post
Post
4701
Kimi K2 tech report is full of gems as always. Here are my notes on it:

> MuonClip: Pretty crazy how after 70k the training stabilizes and the QK-clip is basically inactive. There is also no loss in perf with QK-clip which is not trivial at all (at small scale but with aggressive threshold). Also a cool explanation of why muon makes the logit explode in appendix E (tl;dr is that muon makes the singular value of the update matrix higher)
> Sparsity scaling laws to justify their ratio, they have a very solid training infra that allows the model to be trained at this sparsity level, they could have increased even more but as sparsity increases the training becomes less efficient.
> They diminish the number of attention heads to make it more efficient for long context since attention heads are a big bottleneck for long context. They also remove 2 of the 3 "first dense" layers in the dsv3 arch.

With the sparsity and attention heads (divided by 2) they achieve 83% increased flops compared to deepseek v3 arch at 128k.

> Data: Rephrasing is KEY. They do a lot more synthetic data generation and rephrase their corpus to have different styles, for longer documents they do it by chunk. I'm (half) surprised by the fact that ONLY 1 epoch (assuming same number of training tokens I think?) of data rephrased 10 times has better accuracy than 10 epochs of the same data rephrased once.
> They do rewriting for Math and Knowledge, for Math they apply the ShallowMath recipe and instruct the model to rephrase in a "learning note" style
> They talk about diversity and probably have some internal stuff/eval to test that, as always still a bit unclear for me how to properly measure that.

The infra is also very nice, quick summary:
> PP=16 (1F1B schedule, a bit custom), EP=16, zero1
> No FP8 computation but for storage of specific layers, selective recomputation for inexpensive block, activation offloading to CPU
burtenshaw 
posted an update about 2 months ago
view post
Post
1381
Kimi-K2 is ready for general use! In these notebooks I walk you through use cases like function calling and structured outputs.

🔗 burtenshaw/Kimi-K2-notebooks

You can swap it into any OpenAI compatible application via Inference Providers and get to work with an open source model.
  • 1 reply
·
andito 
posted an update 2 months ago
view post
Post
3998
🧠👁️ Can AI visualize solutions?

Humans often solve visual problems by sketching ideas in our minds. What if Vision-Language Models (VLMs) could do something similar, not by generating full images, but by using internal “mental sketches”?

That’s the idea behind Mirage, a new framework that empowers VLMs to reason using latent visual tokens. Instead of just thinking in words, Mirage mixes in abstract visual representations that help the model solve complex tasks.

These aren't photorealistic images. They're compact, internal representations optimized purely to support reasoning.

🔧 Mirage is trained in two phases:

1) Grounding: It learns to produce latent tokens anchored in real images.
2) Refinement: The model drops the images and learns to generate visual tokens on its own.

📈 And yes, it works!
On challenging benchmarks like Visual Spatial Planning, Jigsaw puzzles, and Spatial Attention Tasks, Mirage clearly outperforms GPT-4o and other strong baselines.
Smart sketches > empty words.

By mimicking the way humans visualize solutions, Mirage gives AI a new kind of imagination, one that’s faster, more efficient, and more human-like.
Kudos to the teams at UMass Amherst and MIT behind this exciting work.
Check the paper: Machine Mental Imagery: Empower Multimodal Reasoning with Latent Visual Tokens (2506.17218)
·
burtenshaw 
posted an update 2 months ago
view post
Post
2933
Inference for generative ai models looks like a mine field, but there’s a simple protocol for picking the best inference:

🌍 95% of users >> If you’re using open (large) models and need fast online inference, then use Inference providers on auto mode, and let it choose the best provider for the model. https://huggingface.co/docs/inference-providers/index

👷 fine-tuners/ bespoke >> If you’ve got custom setups, use Inference Endpoints to define a configuration from AWS, Azure, GCP. https://endpoints.huggingface.co/

🦫 Locals >> If you’re trying to stretch everything you can out of a server or local machine, use Llama.cpp, Jan, LMStudio or vLLM. https://huggingface.co/settings/local-apps#local-apps

🪟 Browsers >> If you need open models running right here in the browser, use transformers.js. https://github.com/huggingface/transformers.js

Let me know what you’re using, and if you think it’s more complex than this.