Reasoning datasets competition

community

AI & ML interests

None defined yet.

Recent Activity

reasoning-datasets-competition's activity

codelionΒ 
posted an update 6 days ago
view post
Post
1978
New Research: Theoretical Foundations for In-Context Learning in Transformers

I'm excited to share our latest theoretical work that formally proves an interesting property of large language models: base transformer models can approximate fine-tuned capabilities using only inference-time techniques like in-context learning.

The core question we investigated: Can specialized behaviors typically acquired through expensive supervised fine-tuning be elicited from base models without any parameter updates?

Our theoretical contribution: We provide a formal proof, grounded in the Turing completeness of transformers, showing that this is indeed possible under certain assumptions. The work establishes mathematical bounds on the minimal dataset sizes needed for approximation.

Key theoretical results:

- For text generation tasks: O(mV/Ρ²) examples suffice (where m = number of contexts, V = vocabulary size, Ρ = error tolerance)
- For linear classification: O(d/Ξ΅) examples (where d = input dimension)
- Extensions to finite context scenarios with practical bounds

This work helps explain why techniques like few-shot prompting, retrieval-augmented generation, and in-context learning work so effectively in practice. It bridges formal computer science theory with empirical observations about modern language models.

While the assumptions are idealized (unbounded computational resources, full dataset access), the results provide mathematical foundations for understanding inference-time adaptation strategies that are increasingly important in AI deployment.

Paper: Eliciting Fine-Tuned Transformer Capabilities via Inference-Time Techniques (2506.08060)
  • 1 reply
Β·
davidberenstein1957Β 
posted an update 7 days ago
KingNishΒ 
posted an update 7 days ago
view post
Post
326
What's currently the biggest gap in Open Source Datasets ??
  • 1 reply
Β·
davanstrienΒ 
posted an update 10 days ago
view post
Post
2711
Inspired by Hugging Face's official MCP server, I've developed a complementary tool that exposes my semantic search API to enhance discovery across the HF platform.

Key capabilities:

- AI-powered semantic search for models and datasets
- Parameter count analysis via safetensors metadata
- Trending content discovery
- Find similar models/datasets functionality
- 11 tools total for enhanced ecosystem navigation

The semantic search goes beyond simple keyword matching, understanding context and relationships between different models and datasets.

Example query: "Find around 10 reasoning Hugging Face datasets published in 2025 focusing on topics other than maths and science. Show a link and a short summary for each dataset." (results in video!)

https://github.com/davanstrien/hub-semantic-search-mcp
TonicΒ 
posted an update 14 days ago
view post
Post
466
πŸ™‹πŸ»β€β™‚οΈ hey there folks ,

So every bio/med/chem meeting i go to i always the same questions "why are you sharing a gdrive link with me for this?" and "Do you have any plans to publish your model weights and datasets on huggingface?" and finally i got a good answer today which explains everything :

basically there is some kind of government censorship on this (usa, but i'm sure others too) and they are told they are not allowed as it is considered a "dataleak" which is illegal !!!!

this is terrible ! but the good news is that we can do something about it !

so there is this "call for opinions and comments" here from the NIH (usa) , and here we can make our opinion on this topic known : https://osp.od.nih.gov/comment-form-responsibly-developing-and-sharing-generative-artificial-intelligence-tools-using-nih-controlled-access-data/

kindly consider dropping your opinion and thoughts about this censorship of science , and share this post , link or thoughts widely .

Together maybe we can start to share data and model weights appropriately and openly in a good way πŸ™πŸ»πŸš€

cc. @cyrilzakka

Akhil-TheerthalaΒ 
posted an update 15 days ago
view post
Post
920
Kuvera v0.1.0 is now live!

A series of personal finance advisor models that try to resolve the queries by trying to understand the person’s psychological state and relevant context.

These are still prototypes that have much room for improvement.

What’s included in this release:
- Akhil-Theerthala/Kuvera-8B-v0.1.0: Qwen3-8B, meticulously fine-tuned on approximately 20,000 personal-finance inquiries.
- Akhil-Theerthala/Kuvera-14B-v0.1.0: LoRA on DeepSeek-R1-Distill-Qwen-14B, honed through training on about 10,000 chain-of-thought queries.

For those interested, the models and datasets are accessible for free (links in the comments). If you are curious about the upcoming version's roadmap, let’s connectβ€”there are many more developments I plan to make, and would definitely appreciate any help.
codelionΒ 
posted an update 17 days ago
view post
Post
3393
🧠 We just implemented Andrej Karpathy's "third paradigm" for LLM learning!

System Prompt Learning (SPL) enables LLMs to automatically learn problem-solving strategies from experience, rather than relying on static prompts.

πŸš€ How it works:
Your LLM builds a database of effective strategies, selects the best ones for each problem, and refines them over time based on success rates.

πŸ“Š Results across math benchmarks:
Arena Hard: 29% β†’ 37.6% (+8.6%)
AIME24: 23.33% β†’ 30% (+6.67%)
OptILLMBench: 61% β†’ 65% (+4%)

The best part? All strategies are human-readable and the system gets progressively better at problem types you use frequently.

✨ Key benefits:
πŸ”„ Cumulative learning over time
πŸ“– Transparent, inspectable strategies
πŸ”Œ Works with any OpenAI-compatible API
⚑ Simple integration: just add "spl-" prefix to your model

Built as an open-source plugin in optillm. After 500 queries, our system developed 129 strategies and refined 97 of them!

This feels like a genuine step toward AI that learns from experience while staying completely interpretable.

πŸ”— GitHub: https://github.com/codelion/optillm/tree/main/optillm/plugins/spl
πŸ“– Full article: https://huggingface.co/blog/codelion/system-prompt-learning
🐦 Original Karpathy tweet: https://x.com/karpathy/status/1921368644069765486

Have you experimented with advanced system prompting? What strategies would you want your LLM to learn?
codelionΒ 
posted an update 22 days ago
view post
Post
2337
Introducing AutoThink: Adaptive reasoning for LLMs that improves performance by 43% on reasoning benchmarks!

Instead of using fixed thinking budgets, AutoThink:
- Classifies query complexity (HIGH/LOW) using adaptive classification
- Dynamically allocates thinking tokens based on complexity
- Uses steering vectors derived from Pivotal Token Search to guide reasoning patterns

Results on DeepSeek-R1-Distill-Qwen-1.5B:
- GPQA-Diamond: 31.06% vs 21.72% baseline (+9.34 points)
- MMLU-Pro: 26.38% vs 25.58% baseline (+0.8 points)
- Uses fewer tokens than baseline approaches

Works with any local reasoning model - DeepSeek, Qwen, Llama, custom models. The technique combines our research on Pivotal Token Search (PTS) implementation and adaptive classification frameworks.

Paper: AutoThink: efficient inference for reasoning LLMs
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5253327

Code and examples:
https://github.com/codelion/optillm/tree/main/optillm/autothink

PTS implementation and technical details:
https://github.com/codelion/pts
https://huggingface.co/blog/codelion/pts

Adaptive classifier framework:
https://github.com/codelion/adaptive-classifier

Would love to hear your thoughts on adaptive resource allocation for LLM reasoning! Have you experimented with similar approaches?
  • 5 replies
Β·
TonicΒ 
posted an update 24 days ago
view post
Post
2474
πŸ™‹πŸ»β€β™‚οΈ Hey there folks ,

Yesterday the world's first "Learn to Vibe Code" application was released .

As vibe coding is the mainstream paradigm , so now the first educational app is there to support it .

You can try it out already :

https://vibe.takara.ai

and of course it's entirely open source, so i already made my issue and feature branch :-) πŸš€
zarmalhotraΒ 
updated a Space 28 days ago
codelionΒ 
posted an update 29 days ago
view post
Post
2837
🧬 Hey everyone! Just released **OpenEvolve** - an open-source implementation of Google DeepMind's AlphaEvolve system.

It's an evolutionary coding agent that uses LLMs to discover and optimize algorithms. I successfully replicated DeepMind's results on circle packing (99.97% match!) and evolved a random search into a simulated annealing algorithm.

✨ Key features:
- Evolves entire codebases (not just single functions)
- Works with any OpenAI-compatible API
- LLM ensemble approach for better results
- Multi-objective optimization

πŸ‘‰ Check it out:
GitHub: https://github.com/codelion/openevolve
Blog post: https://huggingface.co/blog/codelion/openevolve

Would love to hear your thoughts or answer any questions about it!
codelionΒ 
posted an update about 1 month ago
view post
Post
2409
Introducing Pivotal Token Search (PTS): A new technique for targeted LLM alignment

Excited to share Pivotal Token Search (PTS), a technique for identifying and optimizing critical decision points in LLM generations!

GitHub repository: https://github.com/codelion/pts

What is PTS?
PTS helps identify specific "pivotal tokens" that dramatically shift the probability of a successful generation. Unlike traditional DPO which treats all tokens equally, PTS focuses optimization on the tokens that actually matter for success.

Inspired by Microsoft's recent Phi-4 paper (which used this technique to achieve SOTA reasoning with only 14B parameters), PTS is especially effective for:
- Mathematical reasoning
- Coding tasks
- Multi-step problem solving
- Any domain where specific decision points strongly impact outcomes

What we're releasing today: codelion/pivotal-token-search-68241145d8b8502122f3ce4f

1. Open-source code:
- Complete implementation of the PTS algorithm
- Data generation pipelines
- Usage examples and documentation

2. Huggingface resources:
- Datasets collection: https://huggingface.co/datasets?other=pts
* Pre-generated preference pairs for various domains
* Ready to use in your DPO training pipelines

- Models collection: https://huggingface.co/models?other=pts
* Pre-trained models fine-tuned with PTS
* Specialized versions for different reasoning tasks

The algorithm is straightforward to implement and can significantly improve your model's reasoning capabilities. Check out the repository for details on getting started!

We welcome feedback, contributions, and collaborations. Let us know if you use PTS in your projects!
ZennyKennyΒ 
posted an update about 1 month ago
view post
Post
908
Community! πŸ’‘πŸ’‘πŸ’‘

It's the last day to submit your datasets for the Reasoning Datasets Competition: https://www.bespokelabs.ai/blog/reasoning-datasets-competition

Here are my submissions:
- ZennyKenny/synthetic_vc_financial_decisions_reasoning_dataset
- ZennyKenny/cosa-benchmark-dataset
- ZennyKenny/tactical-military-reasoning-v.1.0
- ZennyKenny/tron-dataset-v.1.0

Have a look and drop a ❀️ or comment! Check out the entire collection of submissions here: https://huggingface.co/datasets?other=reasoning-datasets-competition
davidberenstein1957Β 
posted an update about 1 month ago
ZennyKennyΒ 
posted an update about 1 month ago
view post
Post
3140
After hearing the news that Marc Andreessen thinks that the only job that is safe from AI replacement is venture capital: https://gizmodo.com/marc-andreessen-says-one-job-is-mostly-safe-from-ai-venture-capitalist-2000596506 🧠🧠🧠

The Reasoned Capital synthetic dataset suddenly feels much more topical: ZennyKenny/synthetic_vc_financial_decisions_reasoning_dataset πŸ”₯πŸ”₯πŸ”₯

Really looking forward to potentially expanding this architecture and seeing how algorithmic clever investment truly is! πŸ’°πŸ’°πŸ’°
ZennyKennyΒ 
posted an update about 2 months ago
view post
Post
3368
When I heard the Reasoning Dataset Competition deadline was extended to 9 May, I knew I had time to get in one more entry. πŸ”₯πŸ”₯πŸ”₯

With the rise of Vibe Coding, and the potential risks that are introduced by humans letting LLMs build their apps for them, lots of people are (rightfully) concerned about the safety of the code that is hitting prod.

In response to that, I'm happy to present my final submission to the Reasoning Dataset Competition and attempt to start benchmarking the ability of LLMs to identify unsafe and / or exploitable code by way of the CoSa (Code Safety) benchmark: ZennyKenny/cosa-benchmark-dataset

Currently a curated set of 200 examples, calibrated on OpenAI's standard issue models (GPT-4.1, o4 mini, and GPT-3.5 Turbo) as "baseline performance" (70% decile). Check it out and drop a ❀️ if you think it could be useful or hit the Community section with suggestions / critiques.
  • 2 replies
Β·