Speech Recognition Community Event Version 2

non-profit
Activity Feed

AI & ML interests

Multi-Lingual Speech Recognition

Recent Activity

speech-recognition-community-v2's activity

albertvillanova 
posted an update about 1 month ago
view post
Post
3906
🚀 New smolagents update: Safer Local Python Execution! 🦾🐍

With the latest release, we've added security checks to the local Python interpreter: every evaluation is now analyzed for dangerous builtins, modules, and functions. 🔒

Here's why this matters & what you need to know! 🧵👇

1️⃣ Why is local execution risky? ⚠️
AI agents that run arbitrary Python code can unintentionally (or maliciously) access system files, run unsafe commands, or exfiltrate data.

2️⃣ New Safety Layer in smolagents 🛡️
We now inspect every return value during execution:
✅ Allowed: Safe built-in types (e.g., numbers, strings, lists)
⛔ Blocked: Dangerous functions/modules (e.g., os.system, subprocess, exec, shutil)

3️⃣ Immediate Benefits 💡
- Prevent agents from accessing unsafe builtins
- Block unauthorized file or network access
- Reduce accidental security vulnerabilities

4️⃣ Security Disclaimer ⚠️
🚨 Despite these improvements, local Python execution is NEVER 100% safe. 🚨
If you need true isolation, use a remote sandboxed executor like Docker or E2B.

5️⃣ The Best Practice: Use Sandboxed Execution 🔐
For production-grade AI agents, we strongly recommend running code in a Docker or E2B sandbox to ensure complete isolation.

6️⃣ Upgrade Now & Stay Safe! 🚀
Check out the latest smolagents release and start building safer AI agents today.

🔗 https://github.com/huggingface/smolagents

What security measures do you take when running AI-generated code? Let’s discuss! 👇

#AI #smolagents #Python #Security
  • 2 replies
·
albertvillanova 
posted an update about 1 month ago
view post
Post
3891
🚀 Big news for AI agents! With the latest release of smolagents, you can now securely execute Python code in sandboxed Docker or E2B environments. 🦾🔒

Here's why this is a game-changer for agent-based systems: 🧵👇

1️⃣ Security First 🔐
Running AI agents in unrestricted Python environments is risky! With sandboxing, your agents are isolated, preventing unintended file access, network abuse, or system modifications.

2️⃣ Deterministic & Reproducible Runs 📦
By running agents in containerized environments, you ensure that every execution happens in a controlled and predictable setting—no more environment mismatches or dependency issues!

3️⃣ Resource Control & Limits 🚦
Docker and E2B allow you to enforce CPU, memory, and execution time limits, so rogue or inefficient agents don’t spiral out of control.

4️⃣ Safer Code Execution in Production 🏭
Deploy AI agents confidently, knowing that any generated code runs in an ephemeral, isolated environment, protecting your host machine and infrastructure.

5️⃣ Easy to Integrate 🛠️
With smolagents, you can simply configure your agent to use Docker or E2B as its execution backend—no need for complex security setups!

6️⃣ Perfect for Autonomous AI Agents 🤖
If your AI agents generate and execute code dynamically, this is a must-have to avoid security pitfalls while enabling advanced automation.

⚡ Get started now: https://github.com/huggingface/smolagents

What will you build with smolagents? Let us know! 🚀💡
albertvillanova 
posted an update 2 months ago
view post
Post
3940
🚀 Introducing @huggingface Open Deep-Research💥

In just 24 hours, we built an open-source agent that:
✅ Autonomously browse the web
✅ Search, scroll & extract info
✅ Download & manipulate files
✅ Run calculations on data

55% on GAIA validation set! Help us improve it!💡
https://huggingface.co/blog/open-deep-research
  • 3 replies
·
albertvillanova 
posted an update 3 months ago
anton-l 
posted an update 4 months ago
view post
Post
2743
Introducing 📐𝐅𝐢𝐧𝐞𝐌𝐚𝐭𝐡: the best public math pre-training dataset with 50B+ tokens!
HuggingFaceTB/finemath

Math remains challenging for LLMs and by training on FineMath we see considerable gains over other math datasets, especially on GSM8K and MATH.

We build the dataset by:
🛠️ carefully extracting math data from Common Crawl;
🔎 iteratively filtering and recalling high quality math pages using a classifier trained on synthetic annotations to identify math reasoning and deduction.

We conducted a series of ablations comparing the performance of Llama-3.2-3B-Base after continued pre-training on FineMath and observe notable gains compared to the baseline model and other public math datasets.

We hope this helps advance the performance of LLMs on math and reasoning! 🚀
We’re also releasing all the ablation models as well as the evaluation code.

HuggingFaceTB/finemath-6763fb8f71b6439b653482c2
reach-vb 
posted an update 4 months ago
view post
Post
6396
VLMs are going through quite an open revolution AND on-device friendly sizes:

1. Google DeepMind w/ PaliGemma2 - 3B, 10B & 28B: google/paligemma-2-release-67500e1e1dbfdd4dee27ba48

2. OpenGVLabs w/ InternVL 2.5 - 1B, 2B, 4B, 8B, 26B, 38B & 78B: https://huggingface.co/collections/OpenGVLab/internvl-25-673e1019b66e2218f68d7c1c

3. Qwen w/ Qwen 2 VL - 2B, 7B & 72B: Qwen/qwen2-vl-66cee7455501d7126940800d

4. Microsoft w/ FlorenceVL - 3B & 8B: @jiuhai

5. Moondream2 w/ 0.5B: https://huggingface.co/vikhyatk/

What a time to be alive! 🔥
reach-vb 
posted an update 5 months ago
view post
Post
4788
Massive week for Open AI/ ML:

Mistral Pixtral & Instruct Large - ~123B, 128K context, multilingual, json + function calling & open weights
mistralai/Pixtral-Large-Instruct-2411
mistralai/Mistral-Large-Instruct-2411

Allen AI Tülu 70B & 8B - competive with claude 3.5 haiku, beats all major open models like llama 3.1 70B, qwen 2.5 and nemotron
allenai/tulu-3-models-673b8e0dc3512e30e7dc54f5
allenai/tulu-3-datasets-673b8df14442393f7213f372

Llava o1 - vlm capable of spontaneous, systematic reasoning, similar to GPT-o1, 11B model outperforms gemini-1.5-pro, gpt-4o-mini, and llama-3.2-90B-vision
Xkev/Llama-3.2V-11B-cot

Black Forest Labs Flux.1 tools - four new state of the art model checkpoints & 2 adapters for fill, depth, canny & redux, open weights
reach-vb/black-forest-labs-flux1-6743847bde9997dd26609817

Jina AI Jina CLIP v2 - general purpose multilingual and multimodal (text & image) embedding model, 900M params, 512 x 512 resolution, matroyoshka representations (1024 to 64)
jinaai/jina-clip-v2

Apple AIM v2 & CoreML MobileCLIP - large scale vision encoders outperform CLIP and SigLIP. CoreML optimised MobileCLIP models
apple/aimv2-6720fe1558d94c7805f7688c
apple/coreml-mobileclip

A lot more got released like, OpenScholar (https://huggingface.co/collections/OpenScholar/openscholar-v1-67376a89f6a80f448da411a6), smoltalk ( HuggingFaceTB/smoltalk), Hymba ( nvidia/hymba-673c35516c12c4b98b5e845f), Open ASR Leaderboard ( hf-audio/open_asr_leaderboard) and much more..

Can't wait for the next week! 🤗
albertvillanova 
posted an update 5 months ago
view post
Post
1835
🚨 How green is your model? 🌱 Introducing a new feature in the Comparator tool: Environmental Impact for responsible #LLM research!
👉 open-llm-leaderboard/comparator
Now, you can not only compare models by performance, but also by their environmental footprint!

🌍 The Comparator calculates CO₂ emissions during evaluation and shows key model characteristics: evaluation score, number of parameters, architecture, precision, type... 🛠️
Make informed decisions about your model's impact on the planet and join the movement towards greener AI!
reach-vb 
posted an update 5 months ago
view post
Post
4582
What a brilliant week for Open Source AI!

Qwen 2.5 Coder by Alibaba - 0.5B / 1.5B / 3B / 7B / 14B/ 32B (Base + Instruct) Code generation LLMs, with 32B tackling giants like Gemnini 1.5 Pro, Claude Sonnet
Qwen/qwen25-coder-66eaa22e6f99801bf65b0c2f

LLM2CLIP from Microsoft - Leverage LLMs to train ultra-powerful CLIP models! Boosts performance over the previous SOTA by ~17%
microsoft/llm2clip-672323a266173cfa40b32d4c

Athene v2 Chat & Agent by NexusFlow - SoTA general LLM fine-tuned from Qwen 2.5 72B excels at Chat + Function Calling/ JSON/ Agents
Nexusflow/athene-v2-6735b85e505981a794fb02cc

Orca Agent Instruct by Microsoft - 1 million instruct pairs covering text editing, creative writing, coding, reading comprehension, etc - permissively licensed
microsoft/orca-agentinstruct-1M-v1

Ultravox by FixieAI - 70B/ 8B model approaching GPT4o level, pick any LLM, train an adapter with Whisper as Audio Encoder
reach-vb/ultravox-audio-language-model-release-67373b602af0a52b2a88ae71

JanusFlow 1.3 by DeepSeek - Next iteration of their Unified MultiModal LLM Janus with RectifiedFlow
deepseek-ai/JanusFlow-1.3B

Common Corpus by Pleais - 2,003,039,184,047 multilingual, commercially permissive and high quality tokens!
PleIAs/common_corpus

I'm sure I missed a lot, can't wait for the next week!

Put down in comments what I missed! 🤗