TRELLIS Appreciation Community

community

AI & ML interests

None defined yet.

Recent Activity

trellis-community's activity

multimodalartΒ 
posted an update 11 months ago
multimodalartΒ 
posted an update about 1 year ago
view post
Post
28372
The first open Stable Diffusion 3-like architecture model is JUST out πŸ’£ - but it is not SD3! πŸ€”

It is Tencent-Hunyuan/HunyuanDiT by Tencent, a 1.5B parameter DiT (diffusion transformer) text-to-image model πŸ–ΌοΈβœ¨, trained with multi-lingual CLIP + multi-lingual T5 text-encoders for english 🀝 chinese understanding

Try it out by yourself here ▢️ https://huggingface.co/spaces/multimodalart/HunyuanDiT
(a bit too slow as the model is chunky and the research code isn't super optimized for inference speed yet)

In the paper they claim to be SOTA open source based on human preference evaluation!
pcuenqΒ 
posted an update about 1 year ago
view post
Post
7636
OpenELM in Core ML

Apple recently released a set of efficient LLMs in sizes varying between 270M and 3B parameters. Their quality, according to benchmarks, is similar to OLMo models of comparable size, but they required half the pre-training tokens because they use layer-wise scaling, where the number of attention heads increases in deeper layers.

I converted these models to Core ML, for use on Apple Silicon, using this script: https://gist.github.com/pcuenca/23cd08443460bc90854e2a6f0f575084. The converted models were uploaded to this community in the Hub for anyone that wants to integrate inside their apps: corenet-community/openelm-core-ml-6630c6b19268a5d878cfd194

The conversion was done with the following parameters:
- Precision: float32.
- Sequence length: fixed to 128.

With swift-transformers (https://github.com/huggingface/swift-transformers), I'm getting about 56 tok/s with the 270M on my M1 Max, and 6.5 with the largest 3B model. These speeds could be improved by converting to float16. However, there's some precision loss somewhere and generation doesn't work in float16 mode yet. I'm looking into this and will keep you posted! Or take a look at this issue if you'd like to help: https://github.com/huggingface/swift-transformers/issues/95

I'm also looking at optimizing inference using an experimental kv cache in swift-transformers. It's a bit tricky because the layers have varying number of attention heads, but I'm curious to see how much this feature can accelerate performance in this model family :)

Regarding the instruct fine-tuned models, I don't know the chat template that was used. The models use the Llama 2 tokenizer, but the Llama 2 chat template, or the default Alignment Handbook one that was used to train, are not recognized. Any ideas on this welcome!
Β·
multimodalartΒ 
posted an update over 1 year ago
view post
Post
The Stable Diffusion 3 research paper broken down, including some overlooked details! πŸ“

Model
πŸ“ 2 base model variants mentioned: 2B and 8B sizes

πŸ“ New architecture in all abstraction levels:
- πŸ”½ UNet; ⬆️ Multimodal Diffusion Transformer, bye cross attention πŸ‘‹
- πŸ†• Rectified flows for the diffusion process
- 🧩 Still a Latent Diffusion Model

πŸ“„ 3 text-encoders: 2 CLIPs, one T5-XXL; plug-and-play: removing the larger one maintains competitiveness

πŸ—ƒοΈ Dataset was deduplicated with SSCD which helped with memorization (no more details about the dataset tho)

Variants
πŸ” A DPO fine-tuned model showed great improvement in prompt understanding and aesthetics
✏️ An Instruct Edit 2B model was trained, and learned how to do text-replacement

Results
βœ… State of the art in automated evals for composition and prompt understanding
βœ… Best win rate in human preference evaluation for prompt understanding, aesthetics and typography (missing some details on how many participants and the design of the experiment)

Paper: https://stabilityai-public-packages.s3.us-west-2.amazonaws.com/Stable+Diffusion+3+Paper.pdf
Β·
multimodalartΒ 
posted an update over 1 year ago
multimodalartΒ 
posted an update over 1 year ago
view post
Post
It seems February started with a fully open source AI renaissance 🌟

Models released with fully open dataset, training code, weights βœ…

LLM - allenai/olmo-suite-65aeaae8fe5b6b2122b46778 🧠
Embedding - nomic-ai/nomic-embed-text-v1 πŸ“š (sota!)

And it's literally February 1st - can't wait to see what else the community will bring πŸ‘€