Edit model card

output_r1_iter_wo_p

This model is a fine-tuned version of t5-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1334
  • Bleu: 0.0
  • Gen Len: 2.432

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 27 0.2728 0.0 2.9953
No log 2.0 54 0.2650 0.0 2.6791
No log 3.0 81 0.2637 0.0 2.1874
No log 4.0 108 0.2418 0.0 2.2973
No log 5.0 135 0.2738 0.0 2.2494
No log 6.0 162 0.1914 0.0 2.3812
No log 7.0 189 0.1641 0.0 2.3983
No log 8.0 216 0.1695 0.0 2.3995
No log 9.0 243 0.1521 0.0 2.4167
No log 10.0 270 0.1569 0.0 2.4167
No log 11.0 297 0.1615 0.0 2.4137
No log 12.0 324 0.1473 0.0 2.4238
No log 13.0 351 0.1376 0.0 2.4255
No log 14.0 378 0.1495 0.0 2.419
No log 15.0 405 0.1334 0.0 2.432
No log 16.0 432 0.1474 0.0 2.4214
No log 17.0 459 0.1484 0.0 2.4291
No log 18.0 486 0.1407 0.0 2.4297
0.1905 19.0 513 0.1568 0.0 2.4208
0.1905 20.0 540 0.1631 0.0 2.4261

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.