oyemade's picture
Update README.md
c8d2b4e verified
metadata
base_model: oyemade/w2v-bert-2.0-yoruba-CV17.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-yoruba-CV17.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: yo
          split: test
          args: yo
        metrics:
          - name: Wer
            type: wer
            value: 0.10649647551914651
language:
  - yo

w2v-bert-2.0-yoruba-CV17.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1095
  • Wer: 0.1065

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3812 0.5102 100 0.3328 0.3070
0.2283 1.0204 200 0.2721 0.2807
0.1993 1.5306 300 0.3371 0.3481
0.2045 2.0408 400 0.3514 0.3314
0.2057 2.5510 500 0.3036 0.3086
0.2193 3.0612 600 0.2904 0.2847
0.1956 3.5714 700 0.2631 0.2534
0.1717 4.0816 800 0.1923 0.1995
0.1234 4.5918 900 0.1678 0.1732
0.0995 5.1020 1000 0.1280 0.1341
0.0614 5.6122 1100 0.1095 0.1065

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1