|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: SmilingWolf/wd-swinv2-tagger-v3 |
|
inference: false |
|
tags: |
|
- wd-tagger |
|
--- |
|
|
|
# WD SwinV2 Tagger v3 with 🤗 transformers |
|
|
|
Converted from [SmilingWolf/wd-swinv2-tagger-v3](https://huggingface.co/SmilingWolf/wd-swinv2-tagger-v3) to transformers library format. |
|
|
|
## Example |
|
|
|
### Pipeline |
|
|
|
```py |
|
from transformers import pipeline |
|
|
|
pipe = pipeline( |
|
"image-classification", |
|
model="p1atdev/wd-swinv2-tagger-v3-hf", |
|
trust_remote_code=True, |
|
) |
|
|
|
print(pipe("sample.webp", top_k=15)) |
|
#[{'label': '1girl', 'score': 0.9973934888839722}, |
|
# {'label': 'solo', 'score': 0.9719744324684143}, |
|
# {'label': 'dress', 'score': 0.9539461135864258}, |
|
# {'label': 'hat', 'score': 0.9511678218841553}, |
|
# {'label': 'outdoors', 'score': 0.9438753128051758}, |
|
# {'label': 'sky', 'score': 0.9195725917816162}, |
|
# {'label': 'sitting', 'score': 0.9178725481033325}, |
|
# {'label': 'looking up', 'score': 0.9122412800788879}, |
|
# {'label': 'short hair', 'score': 0.8630313873291016}, |
|
# {'label': 'cloud', 'score': 0.8609118461608887}, |
|
# {'label': 'brown hair', 'score': 0.7723952531814575}, |
|
# {'label': 'short sleeves', 'score': 0.7649227380752563}, |
|
# {'label': 'day', 'score': 0.7641971111297607}, |
|
# {'label': 'rating:general', 'score': 0.7605368494987488}, |
|
# {'label': 'white dress', 'score': 0.7596388459205627}] |
|
``` |
|
|
|
### AutoModel |
|
|
|
|
|
```py |
|
from PIL import Image |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from transformers import ( |
|
AutoImageProcessor, |
|
AutoModelForImageClassification, |
|
) |
|
|
|
MODEL_NAME = "p1atdev/wd-swinv2-tagger-v3-hf" |
|
|
|
model = AutoModelForImageClassification.from_pretrained( |
|
MODEL_NAME, |
|
) |
|
processor = AutoImageProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) |
|
|
|
image = Image.open("sample.webp") |
|
inputs = processor.preprocess(image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs.to(model.device, model.dtype)) |
|
logits = torch.sigmoid(outputs.logits[0]) # take the first logits |
|
|
|
# get probabilities |
|
results = {model.config.id2label[i]: logit.float() for i, logit in enumerate(logits)} |
|
results = { |
|
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True) if v > 0.35 # 35% threshold |
|
} |
|
print(results) # rating tags and character tags are also included |
|
#{'1girl': tensor(0.9974), |
|
# 'solo': tensor(0.9720), |
|
# 'dress': tensor(0.9539), |
|
# 'hat': tensor(0.9512), |
|
# 'outdoors': tensor(0.9439), |
|
# 'sky': tensor(0.9196), |
|
# 'sitting': tensor(0.9179), |
|
# 'looking up': tensor(0.9122), |
|
# 'short hair': tensor(0.8630), |
|
# 'cloud': tensor(0.8609), |
|
# 'brown hair': tensor(0.7724), |
|
# 'short sleeves': tensor(0.7649), |
|
# 'day': tensor(0.7642), |
|
# 'rating:general': tensor(0.7605), |
|
# ... |
|
``` |
|
|
|
## Labels |
|
|
|
All of rating tags have prefix `rating:` and character tags have prefix `character:`. |
|
|
|
- Rating tags: `rating:general`, `rating:sensitive`, ... |
|
- Character tags: `character:frieren`, `character:hatsune miku`, ... |
|
|
|
|