|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: SmilingWolf/wd-swinv2-tagger-v3 |
|
inference: false |
|
tags: |
|
- wd-v14-tagger |
|
--- |
|
|
|
# WD SwinV2 Tagger v3 with 🤗 transformers |
|
|
|
Converted from [SmilingWolf/wd-swinv2-tagger-v3](https://huggingface.co/SmilingWolf/wd-swinv2-tagger-v3) to transformers library format. |
|
|
|
## Example |
|
|
|
### Pipeline |
|
|
|
```py |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("image-classification", model="p1atdev/wd-swinv2-tagger-v3-hf", trust_remote_code=True) |
|
|
|
print(pipe("sample.webp", top_k=20)) |
|
#[{'label': '1girl', 'score': 0.996832549571991}, |
|
# {'label': 'solo', 'score': 0.958362340927124}, |
|
# {'label': 'dress', 'score': 0.9418023228645325}, |
|
# {'label': 'hat', 'score': 0.9263725280761719}, |
|
# {'label': 'sitting', 'score': 0.9178062677383423}, |
|
# {'label': 'looking_up', 'score': 0.8978123068809509}, |
|
# {'label': 'short_hair', 'score': 0.8242536187171936}, |
|
# {'label': 'sky', 'score': 0.784591794013977}, |
|
# {'label': 'outdoors', 'score': 0.767611563205719}, |
|
# {'label': 'rating:general', 'score': 0.7561964988708496}] |
|
``` |
|
|
|
### AutoModel |
|
|
|
|
|
```py |
|
from PIL import Image |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from transformers import ( |
|
AutoImageProcessor, |
|
AutoModelForImageClassification, |
|
) |
|
|
|
MODEL_NAME = "p1atdev/wd-swinv2-tagger-v3-hf" |
|
|
|
model = AutoModelForImageClassification.from_pretrained( |
|
MODEL_NAME, |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model.eval() |
|
processor = AutoImageProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) |
|
|
|
image = Image.open("sample.webp") |
|
inputs = processor.preprocess(image, return_tensors="pt") |
|
|
|
outputs = model(**inputs.to(model.device, model.dtype)) |
|
logits = torch.sigmoid(outputs.logits[0]) |
|
|
|
# get probabilities |
|
results = {model.config.id2label[i]: logit.float() for i, logit in enumerate(logits)} |
|
results = { |
|
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True) |
|
} |
|
print(results) # rating tags and character tags are also included |
|
#{'1girl': tensor(0.9968), |
|
# 'solo': tensor(0.9584), |
|
# 'dress': tensor(0.9418), |
|
# 'hat': tensor(0.9264), |
|
# 'sitting': tensor(0.9178), |
|
# 'looking_up': tensor(0.8978), |
|
# 'short_hair': tensor(0.8243), |
|
# 'sky': tensor(0.7846), |
|
# 'outdoors': tensor(0.7676), |
|
# 'rating:general': tensor(0.7562), |
|
# ... |
|
``` |