Sentence Similarity
sentence-transformers
Safetensors
Ukrainian
English
xlm-roberta
feature-extraction
Generated from Trainer
dataset_size:523982
loss:MSELoss
Eval Results
text-embeddings-inference
panalexeu's picture
Update README.md
54dffeb verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:523982
- loss:MSELoss
base_model: FacebookAI/xlm-roberta-base
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- negative_mse
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
results:
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: mse en ua
type: mse-en-ua
metrics:
- type: negative_mse
value: -1.1089269071817398
name: Negative Mse
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 en en
type: sts17-en-en
metrics:
- type: pearson_cosine
value: 0.6784819487397877
name: Pearson Cosine
- type: spearman_cosine
value: 0.7308493185913256
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 en ua
type: sts17-en-ua
metrics:
- type: pearson_cosine
value: 0.592555339963418
name: Pearson Cosine
- type: spearman_cosine
value: 0.6197606373137193
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 ua ua
type: sts17-ua-ua
metrics:
- type: pearson_cosine
value: 0.6158998595292998
name: Pearson Cosine
- type: spearman_cosine
value: 0.6445750755380512
name: Spearman Cosine
license: mit
datasets:
- sentence-transformers/parallel-sentences-talks
- sentence-transformers/parallel-sentences-tatoeba
- sentence-transformers/parallel-sentences-wikimatrix
language:
- uk
- en
---
# SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
👉 Check out the model on [GitHub](https://github.com/panalexeu/xlm-roberta-ua-distilled).
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:** [parallel-sentences-talks](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [parallel-sentences-wikimatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix), [parallel-sentences-tatoeba](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba)
- **Language:** Ukrainian, English
- **License:** MIT
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("panalexeu/xlm-roberta-ua-distilled")
# Run inference
sentences = [
"You'd better consult the doctor.",
'Краще проконсультуйся у лікаря.',
'Їх позначають як Aufklärungsfahrzeug 93 та Aufklärungsfahrzeug 97 відповідно.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Knowledge Distillation
* Dataset: `mse-en-ua`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:------------|
| **negative_mse** | **-1.1089** |
#### Semantic Similarity
* Datasets: `sts17-en-en`, `sts17-en-ua` and `sts17-ua-ua`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | sts17-en-en | sts17-en-ua | sts17-ua-ua |
|:--------------------|:------------|:------------|:------------|
| pearson_cosine | 0.6785 | 0.5926 | 0.6159 |
| **spearman_cosine** | **0.7308** | **0.6198** | **0.6446** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
* Dataset: [parallel-sentences-talks](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [parallel-sentences-wikimatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix), [parallel-sentences-tatoeba](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba)
* Size: 523,982 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | string | list |
| details | <ul><li>min: 5 tokens</li><li>mean: 21.11 tokens</li><li>max: 254 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 23.15 tokens</li><li>max: 293 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| english | non_english | label |
|:----------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|
| <code>Her real name is Lydia (リディア, Ridia), but she was mistaken for a boy and called Ricard.</code> | <code>Справжнє ім'я — Лідія, але її помилково сприйняли за хлопчика і назвали Рікард.</code> | <code>[0.15217968821525574, -0.17830222845077515, -0.12677159905433655, 0.22082313895225525, 0.40085524320602417, ...]</code> |
| <code>(Applause) So he didn't just learn water.</code> | <code>(Аплодисменти) Він не тільки вивчив слово "вода".</code> | <code>[-0.1058148592710495, -0.08846072107553482, -0.2684604823589325, -0.105219267308712, 0.3050258755683899, ...]</code> |
| <code>It is tightly integrated with SAM, the Storage and Archive Manager, and hence is often referred to as SAM-QFS.</code> | <code>Вона тісно інтегрована з SAM (Storage and Archive Manager), тому часто називається SAM-QFS.</code> | <code>[0.03270340710878372, -0.45798248052597046, -0.20090211927890778, 0.006579531356692314, -0.03178019821643829, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
### Evaluation Dataset
* Dataset: [parallel-sentences-talks](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [parallel-sentences-wikimatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix), [parallel-sentences-tatoeba](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba)
* Size: 3,838 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | string | list |
| details | <ul><li>min: 5 tokens</li><li>mean: 15.64 tokens</li><li>max: 143 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.98 tokens</li><li>max: 148 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| english | non_english | label |
|:---------------------------------------------------------|:-----------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|
| <code>I have lost my wallet.</code> | <code>Я загубив гаманець.</code> | <code>[-0.11186987161636353, -0.03419225662946701, -0.31304317712783813, 0.0838347002863884, 0.108644500374794, ...]</code> |
| <code>It's a pharmaceutical product.</code> | <code>Це фармацевтичний продукт.</code> | <code>[0.04133488982915878, -0.4182000756263733, -0.30786487460136414, -0.09351564198732376, -0.023946482688188553, ...]</code> |
| <code>We've all heard of the Casual Friday thing.</code> | <code>Всі ми чули про «джинсову п’ятницю» (вільна форма одягу).</code> | <code>[-0.10697802156209946, 0.21002227067947388, -0.2513434886932373, -0.3718843460083008, 0.06871984899044037, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 3
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 3
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | mse-en-ua_negative_mse | sts17-en-en_spearman_cosine | sts17-en-ua_spearman_cosine | sts17-ua-ua_spearman_cosine |
|:------:|:-----:|:-------------:|:---------------:|:----------------------:|:---------------------------:|:---------------------------:|:---------------------------:|
| 0.0938 | 1024 | 0.3281 | 0.0297 | -2.9592 | 0.2325 | 0.1547 | 0.2265 |
| 0.1876 | 2048 | 0.1136 | 0.2042 | -21.6693 | 0.0553 | 0.0429 | 0.2442 |
| 0.2814 | 3072 | 0.1008 | 0.0273 | -2.7461 | 0.2666 | 0.0758 | 0.2613 |
| 0.3752 | 4096 | 0.0843 | 0.0243 | -2.4623 | 0.2541 | 0.0012 | 0.3680 |
| 0.4690 | 5120 | 0.0756 | 0.0216 | -2.2095 | 0.3933 | 0.2535 | 0.4342 |
| 0.5628 | 6144 | 0.0661 | 0.0187 | -1.9539 | 0.5739 | 0.4222 | 0.5056 |
| 0.6566 | 7168 | 0.0579 | 0.0164 | -1.7513 | 0.6184 | 0.4897 | 0.5826 |
| 0.7504 | 8192 | 0.0526 | 0.0153 | -1.6546 | 0.6219 | 0.4568 | 0.5842 |
| 0.8442 | 9216 | 0.0488 | 0.0142 | -1.5525 | 0.6160 | 0.5012 | 0.5884 |
| 0.9380 | 10240 | 0.046 | 0.0135 | -1.4957 | 0.6361 | 0.5046 | 0.5969 |
| 1.0318 | 11264 | 0.0437 | 0.0130 | -1.4506 | 0.6453 | 0.5093 | 0.5939 |
| 1.1256 | 12288 | 0.0419 | 0.0125 | -1.4049 | 0.6403 | 0.5054 | 0.6020 |
| 1.2194 | 13312 | 0.0404 | 0.0122 | -1.3794 | 0.6654 | 0.5442 | 0.6182 |
| 1.3132 | 14336 | 0.0394 | 0.0118 | -1.3434 | 0.6800 | 0.5790 | 0.6291 |
| 1.4070 | 15360 | 0.0383 | 0.0115 | -1.3184 | 0.6836 | 0.5805 | 0.6301 |
| 1.5008 | 16384 | 0.0375 | 0.0114 | -1.3067 | 0.6742 | 0.5555 | 0.6055 |
| 1.5946 | 17408 | 0.0368 | 0.0111 | -1.2864 | 0.6909 | 0.5765 | 0.6256 |
| 1.6884 | 18432 | 0.036 | 0.0109 | -1.2633 | 0.6875 | 0.5801 | 0.6178 |
| 1.7822 | 19456 | 0.0353 | 0.0107 | -1.2490 | 0.7060 | 0.5959 | 0.6322 |
| 1.8760 | 20480 | 0.035 | 0.0106 | -1.2357 | 0.7127 | 0.6047 | 0.6389 |
| 1.9698 | 21504 | 0.0344 | 0.0105 | -1.2265 | 0.7265 | 0.6233 | 0.6459 |
| 2.0636 | 22528 | 0.0335 | 0.0103 | -1.2108 | 0.7184 | 0.6151 | 0.6438 |
| 2.1574 | 23552 | 0.0327 | 0.0103 | -1.2101 | 0.7122 | 0.6074 | 0.6427 |
| 2.2512 | 24576 | 0.0324 | 0.0102 | -1.1972 | 0.7232 | 0.6174 | 0.6447 |
| 2.3450 | 25600 | 0.0322 | 0.0100 | -1.1813 | 0.7217 | 0.6166 | 0.6457 |
| 2.4388 | 26624 | 0.032 | 0.0099 | -1.1745 | 0.7308 | 0.6272 | 0.6534 |
| 2.5326 | 27648 | 0.0316 | 0.0098 | -1.1673 | 0.7289 | 0.6125 | 0.6441 |
| 2.6264 | 28672 | 0.0314 | 0.0098 | -1.1622 | 0.7222 | 0.6105 | 0.6365 |
| 2.7202 | 29696 | 0.0312 | 0.0097 | -1.1593 | 0.7175 | 0.6121 | 0.6348 |
| 2.8140 | 30720 | 0.0308 | 0.0096 | -1.1457 | 0.7204 | 0.6044 | 0.6377 |
| 2.9078 | 31744 | 0.0307 | 0.0095 | -1.1411 | 0.7230 | 0.6175 | 0.6353 |
| 3.0016 | 32768 | 0.0305 | 0.0095 | -1.1414 | 0.7130 | 0.6052 | 0.6340 |
| 3.0954 | 33792 | 0.0296 | 0.0095 | -1.1360 | 0.7234 | 0.6160 | 0.6411 |
| 3.1892 | 34816 | 0.0295 | 0.0094 | -1.1317 | 0.7220 | 0.6131 | 0.6396 |
| 3.2830 | 35840 | 0.0294 | 0.0094 | -1.1306 | 0.7315 | 0.6167 | 0.6505 |
| 3.3768 | 36864 | 0.0293 | 0.0094 | -1.1263 | 0.7219 | 0.6089 | 0.6450 |
| 3.4706 | 37888 | 0.0292 | 0.0093 | -1.1225 | 0.7236 | 0.6141 | 0.6451 |
| 3.5644 | 38912 | 0.0291 | 0.0093 | -1.1204 | 0.7331 | 0.6179 | 0.6460 |
| 3.6582 | 39936 | 0.029 | 0.0092 | -1.1147 | 0.7226 | 0.6127 | 0.6406 |
| 3.7520 | 40960 | 0.029 | 0.0092 | -1.1118 | 0.7245 | 0.6184 | 0.6425 |
| 3.8458 | 41984 | 0.0289 | 0.0092 | -1.1102 | 0.7279 | 0.6179 | 0.6465 |
| 3.9396 | 43008 | 0.0288 | 0.0092 | -1.1099 | 0.7298 | 0.6191 | 0.6438 |
| 3.9997 | 43664 | - | 0.0092 | -1.1089 | 0.7308 | 0.6198 | 0.6446 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->