Edit model card

model_009

A Llama2-70b model trained on Orca Style datasets.

Passionate about Generative AI? I help companies to privately train and deploy custom LLM/MLLM affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat!

https://www.linkedin.com/in/pankajam Looking forward to connecting!


Evaluation

We evaluated model_009 on a wide range of tasks using Language Model Evaluation Harness from EleutherAI.

Here are the results on metrics used by HuggingFaceH4 Open LLM Leaderboard

Task Value
ARC 0.7159
HellaSwag 0.8771
MMLU 0.6943
TruthfulQA 0.6072
Winogrande 0.8232
GSM8k 0.3942
DROP 0.4401
Total Average 0.6503

Prompt Format

### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.

### User:
Tell me about Orcas.

### Assistant:

OobaBooga Instructions:

This model required upto 45GB GPU VRAM in 4bit so it can be loaded directly on Single RTX 6000/L40/A40/A100/H100 GPU or Double RTX 4090/L4/A10/RTX 3090/RTX A5000 So, if you have access to Machine with 45GB GPU VRAM and have installed OobaBooga Web UI on it. You can just download this model by using HF repo link directly on OobaBooga Web UI "Model" Tab/Page & Just use load-in-4bit option in it.

model_load_screenshot

After that go to Default Tab/Page on OobaBooga Web UI and copy paste above prompt format into Input and Enjoy!

default_input_screenshot


Code Instructions:

Below shows a code example on how to use this model

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

tokenizer = AutoTokenizer.from_pretrained("pankajmathur/model_009")
model = AutoModelForCausalLM.from_pretrained(
  "pankajmathur/model_009",
  torch_dtype=torch.float16,
  load_in_4bit=True,
  low_cpu_mem_usage=True,
  device_map="auto"
)
system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"

#generate text steps
instruction = "Tell me about Orcas."
prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096)

print(tokenizer.decode(output[0], skip_special_tokens=True))

Limitations & Biases:

While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.

Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.

Exercise caution and cross-check information when necessary.

Citiation:

Please kindly cite using the following BibTeX:

@misc{model_009,
  author = {Pankaj Mathur},
  title = {model_009: An Orca Style Llama2-70b model},
  month = {August},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://https://huggingface.co/pankajmathur/model_009},
}
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@software{touvron2023llama2,
  title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
  author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
 Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom},
  year={2023}
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 65.03
ARC (25-shot) 71.59
HellaSwag (10-shot) 87.7
MMLU (5-shot) 69.43
TruthfulQA (0-shot) 60.72
Winogrande (5-shot) 82.32
GSM8K (5-shot) 39.42
DROP (3-shot) 44.01

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.53
AI2 Reasoning Challenge (25-Shot) 71.59
HellaSwag (10-Shot) 87.70
MMLU (5-Shot) 69.43
TruthfulQA (0-shot) 60.72
Winogrande (5-shot) 82.32
GSM8k (5-shot) 39.42
Downloads last month
93
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train pankajmathur/model_009

Spaces using pankajmathur/model_009 21

Evaluation results