SentenceTransformer
This is a sentence-transformers model trained on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("pankajrajdeo/BioForge-bioformer-16L-foundational")
# Run inference
sentences = [
'pisiform joint',
'It is a joint between the pisiform and triquetrum.',
'UBERON',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
foundational_eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8787 |
cosine_accuracy@3 | 0.9251 |
cosine_accuracy@5 | 0.937 |
cosine_accuracy@10 | 0.9474 |
cosine_precision@1 | 0.8787 |
cosine_precision@3 | 0.4516 |
cosine_precision@5 | 0.2983 |
cosine_precision@10 | 0.1614 |
cosine_recall@1 | 0.651 |
cosine_recall@3 | 0.8341 |
cosine_recall@5 | 0.8719 |
cosine_recall@10 | 0.9022 |
cosine_ndcg@10 | 0.8778 |
cosine_mrr@10 | 0.9037 |
cosine_map@100 | 0.8544 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 3,997,120 training samples
- Columns:
anchor
,positive
,source
, andpair_type
- Approximate statistics based on the first 1000 samples:
anchor positive source pair_type type string string string string details - min: 3 tokens
- mean: 12.57 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 15.69 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 5.12 tokens
- max: 7 tokens
- min: 3 tokens
- mean: 3.06 tokens
- max: 9 tokens
- Samples:
anchor positive source pair_type IM - Intramuscular sedation
Intramuscular sedation
SNOMED_CT
synonym
Metergoline
Sodium channel protein type 2 subunit alpha
DrugBank
target
Trichomycterus sp. MBML6210_4
unclassified Trichomycterus
NCBITAXON
hierarchy
- Loss:
main.MultipleNegativesSymmetricMarginLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512gradient_accumulation_steps
: 4learning_rate
: 1.2e-05lr_scheduler_type
: cosinewarmup_ratio
: 0.05bf16
: Truedataloader_num_workers
: 16load_best_model_at_end
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1.2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 16dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | foundational_eval_cosine_ndcg@10 |
---|---|---|---|
0.0518 | 100 | 1.0162 | - |
0.1035 | 200 | 0.7522 | - |
0.1553 | 300 | 0.644 | - |
0.2070 | 400 | 0.5971 | - |
0.2588 | 500 | 0.5651 | - |
0.3105 | 600 | 0.5391 | - |
0.3297 | 637 | - | 0.8536 |
0.3623 | 700 | 0.5306 | - |
0.4140 | 800 | 0.5122 | - |
0.4658 | 900 | 0.5024 | - |
0.5175 | 1000 | 0.494 | - |
0.5693 | 1100 | 0.4907 | - |
0.6210 | 1200 | 0.48 | - |
0.6593 | 1274 | - | 0.8639 |
0.6728 | 1300 | 0.47 | - |
0.7245 | 1400 | 0.4657 | - |
0.7763 | 1500 | 0.4643 | - |
0.8281 | 1600 | 0.4573 | - |
0.8798 | 1700 | 0.4555 | - |
0.9316 | 1800 | 0.4537 | - |
0.9833 | 1900 | 0.4431 | - |
0.9890 | 1911 | - | 0.8693 |
1.0347 | 2000 | 0.4356 | - |
1.0864 | 2100 | 0.4299 | - |
1.1382 | 2200 | 0.4278 | - |
1.1899 | 2300 | 0.4307 | - |
1.2417 | 2400 | 0.4242 | - |
1.2934 | 2500 | 0.4279 | - |
1.3183 | 2548 | - | 0.8723 |
1.3452 | 2600 | 0.4185 | - |
1.3969 | 2700 | 0.42 | - |
1.4487 | 2800 | 0.4189 | - |
1.5005 | 2900 | 0.4183 | - |
1.5522 | 3000 | 0.4143 | - |
1.6040 | 3100 | 0.4147 | - |
1.6479 | 3185 | - | 0.8748 |
1.6557 | 3200 | 0.413 | - |
1.7075 | 3300 | 0.4107 | - |
1.7592 | 3400 | 0.4114 | - |
1.8110 | 3500 | 0.4111 | - |
1.8627 | 3600 | 0.4073 | - |
1.9145 | 3700 | 0.4093 | - |
1.9662 | 3800 | 0.4057 | - |
1.9776 | 3822 | - | 0.8766 |
2.0176 | 3900 | 0.3993 | - |
2.0693 | 4000 | 0.3996 | - |
2.1211 | 4100 | 0.3987 | - |
2.1729 | 4200 | 0.4012 | - |
2.2246 | 4300 | 0.3979 | - |
2.2764 | 4400 | 0.3977 | - |
2.3069 | 4459 | - | 0.8774 |
2.3281 | 4500 | 0.3981 | - |
2.3799 | 4600 | 0.394 | - |
2.4316 | 4700 | 0.3946 | - |
2.4834 | 4800 | 0.395 | - |
2.5351 | 4900 | 0.3971 | - |
2.5869 | 5000 | 0.3963 | - |
2.6366 | 5096 | - | 0.8776 |
2.6386 | 5100 | 0.396 | - |
2.6904 | 5200 | 0.3976 | - |
2.7421 | 5300 | 0.3963 | - |
2.7939 | 5400 | 0.3985 | - |
2.8456 | 5500 | 0.3968 | - |
2.8974 | 5600 | 0.3973 | - |
2.9492 | 5700 | 0.3981 | - |
2.9662 | 5733 | - | 0.8778 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Evaluation results
- Cosine Accuracy@1 on foundational evalself-reported0.879
- Cosine Accuracy@3 on foundational evalself-reported0.925
- Cosine Accuracy@5 on foundational evalself-reported0.937
- Cosine Accuracy@10 on foundational evalself-reported0.947
- Cosine Precision@1 on foundational evalself-reported0.879
- Cosine Precision@3 on foundational evalself-reported0.452
- Cosine Precision@5 on foundational evalself-reported0.298
- Cosine Precision@10 on foundational evalself-reported0.161
- Cosine Recall@1 on foundational evalself-reported0.651
- Cosine Recall@3 on foundational evalself-reported0.834