SentenceTransformer

This is a sentence-transformers model trained on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("pankajrajdeo/BioForge-bioformer-16L-foundational")
# Run inference
sentences = [
    'pisiform joint',
    'It is a joint between the pisiform and triquetrum.',
    'UBERON',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8787
cosine_accuracy@3 0.9251
cosine_accuracy@5 0.937
cosine_accuracy@10 0.9474
cosine_precision@1 0.8787
cosine_precision@3 0.4516
cosine_precision@5 0.2983
cosine_precision@10 0.1614
cosine_recall@1 0.651
cosine_recall@3 0.8341
cosine_recall@5 0.8719
cosine_recall@10 0.9022
cosine_ndcg@10 0.8778
cosine_mrr@10 0.9037
cosine_map@100 0.8544

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 3,997,120 training samples
  • Columns: anchor, positive, source, and pair_type
  • Approximate statistics based on the first 1000 samples:
    anchor positive source pair_type
    type string string string string
    details
    • min: 3 tokens
    • mean: 12.57 tokens
    • max: 256 tokens
    • min: 3 tokens
    • mean: 15.69 tokens
    • max: 256 tokens
    • min: 3 tokens
    • mean: 5.12 tokens
    • max: 7 tokens
    • min: 3 tokens
    • mean: 3.06 tokens
    • max: 9 tokens
  • Samples:
    anchor positive source pair_type
    IM - Intramuscular sedation Intramuscular sedation SNOMED_CT synonym
    Metergoline Sodium channel protein type 2 subunit alpha DrugBank target
    Trichomycterus sp. MBML6210_4 unclassified Trichomycterus NCBITAXON hierarchy
  • Loss: main.MultipleNegativesSymmetricMarginLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 512
  • gradient_accumulation_steps: 4
  • learning_rate: 1.2e-05
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.05
  • bf16: True
  • dataloader_num_workers: 16
  • load_best_model_at_end: True
  • gradient_checkpointing: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1.2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 16
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss foundational_eval_cosine_ndcg@10
0.0518 100 1.0162 -
0.1035 200 0.7522 -
0.1553 300 0.644 -
0.2070 400 0.5971 -
0.2588 500 0.5651 -
0.3105 600 0.5391 -
0.3297 637 - 0.8536
0.3623 700 0.5306 -
0.4140 800 0.5122 -
0.4658 900 0.5024 -
0.5175 1000 0.494 -
0.5693 1100 0.4907 -
0.6210 1200 0.48 -
0.6593 1274 - 0.8639
0.6728 1300 0.47 -
0.7245 1400 0.4657 -
0.7763 1500 0.4643 -
0.8281 1600 0.4573 -
0.8798 1700 0.4555 -
0.9316 1800 0.4537 -
0.9833 1900 0.4431 -
0.9890 1911 - 0.8693
1.0347 2000 0.4356 -
1.0864 2100 0.4299 -
1.1382 2200 0.4278 -
1.1899 2300 0.4307 -
1.2417 2400 0.4242 -
1.2934 2500 0.4279 -
1.3183 2548 - 0.8723
1.3452 2600 0.4185 -
1.3969 2700 0.42 -
1.4487 2800 0.4189 -
1.5005 2900 0.4183 -
1.5522 3000 0.4143 -
1.6040 3100 0.4147 -
1.6479 3185 - 0.8748
1.6557 3200 0.413 -
1.7075 3300 0.4107 -
1.7592 3400 0.4114 -
1.8110 3500 0.4111 -
1.8627 3600 0.4073 -
1.9145 3700 0.4093 -
1.9662 3800 0.4057 -
1.9776 3822 - 0.8766
2.0176 3900 0.3993 -
2.0693 4000 0.3996 -
2.1211 4100 0.3987 -
2.1729 4200 0.4012 -
2.2246 4300 0.3979 -
2.2764 4400 0.3977 -
2.3069 4459 - 0.8774
2.3281 4500 0.3981 -
2.3799 4600 0.394 -
2.4316 4700 0.3946 -
2.4834 4800 0.395 -
2.5351 4900 0.3971 -
2.5869 5000 0.3963 -
2.6366 5096 - 0.8776
2.6386 5100 0.396 -
2.6904 5200 0.3976 -
2.7421 5300 0.3963 -
2.7939 5400 0.3985 -
2.8456 5500 0.3968 -
2.8974 5600 0.3973 -
2.9492 5700 0.3981 -
2.9662 5733 - 0.8778

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.53.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
9
Safetensors
Model size
41.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results