SentenceTransformer
This is a sentence-transformers model trained on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("pankajrajdeo/BioForge-bioformer-16L-foundational")
# Run inference
sentences = [
'pisiform joint',
'It is a joint between the pisiform and triquetrum.',
'UBERON',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
foundational_eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.8787 |
| cosine_accuracy@3 | 0.9251 |
| cosine_accuracy@5 | 0.937 |
| cosine_accuracy@10 | 0.9474 |
| cosine_precision@1 | 0.8787 |
| cosine_precision@3 | 0.4516 |
| cosine_precision@5 | 0.2983 |
| cosine_precision@10 | 0.1614 |
| cosine_recall@1 | 0.651 |
| cosine_recall@3 | 0.8341 |
| cosine_recall@5 | 0.8719 |
| cosine_recall@10 | 0.9022 |
| cosine_ndcg@10 | 0.8778 |
| cosine_mrr@10 | 0.9037 |
| cosine_map@100 | 0.8544 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 3,997,120 training samples
- Columns:
anchor,positive,source, andpair_type - Approximate statistics based on the first 1000 samples:
anchor positive source pair_type type string string string string details - min: 3 tokens
- mean: 12.57 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 15.69 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 5.12 tokens
- max: 7 tokens
- min: 3 tokens
- mean: 3.06 tokens
- max: 9 tokens
- Samples:
anchor positive source pair_type IM - Intramuscular sedationIntramuscular sedationSNOMED_CTsynonymMetergolineSodium channel protein type 2 subunit alphaDrugBanktargetTrichomycterus sp. MBML6210_4unclassified TrichomycterusNCBITAXONhierarchy - Loss:
main.MultipleNegativesSymmetricMarginLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 512gradient_accumulation_steps: 4learning_rate: 1.2e-05lr_scheduler_type: cosinewarmup_ratio: 0.05bf16: Truedataloader_num_workers: 16load_best_model_at_end: Truegradient_checkpointing: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 512per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 4eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1.2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 16dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | foundational_eval_cosine_ndcg@10 |
|---|---|---|---|
| 0.0518 | 100 | 1.0162 | - |
| 0.1035 | 200 | 0.7522 | - |
| 0.1553 | 300 | 0.644 | - |
| 0.2070 | 400 | 0.5971 | - |
| 0.2588 | 500 | 0.5651 | - |
| 0.3105 | 600 | 0.5391 | - |
| 0.3297 | 637 | - | 0.8536 |
| 0.3623 | 700 | 0.5306 | - |
| 0.4140 | 800 | 0.5122 | - |
| 0.4658 | 900 | 0.5024 | - |
| 0.5175 | 1000 | 0.494 | - |
| 0.5693 | 1100 | 0.4907 | - |
| 0.6210 | 1200 | 0.48 | - |
| 0.6593 | 1274 | - | 0.8639 |
| 0.6728 | 1300 | 0.47 | - |
| 0.7245 | 1400 | 0.4657 | - |
| 0.7763 | 1500 | 0.4643 | - |
| 0.8281 | 1600 | 0.4573 | - |
| 0.8798 | 1700 | 0.4555 | - |
| 0.9316 | 1800 | 0.4537 | - |
| 0.9833 | 1900 | 0.4431 | - |
| 0.9890 | 1911 | - | 0.8693 |
| 1.0347 | 2000 | 0.4356 | - |
| 1.0864 | 2100 | 0.4299 | - |
| 1.1382 | 2200 | 0.4278 | - |
| 1.1899 | 2300 | 0.4307 | - |
| 1.2417 | 2400 | 0.4242 | - |
| 1.2934 | 2500 | 0.4279 | - |
| 1.3183 | 2548 | - | 0.8723 |
| 1.3452 | 2600 | 0.4185 | - |
| 1.3969 | 2700 | 0.42 | - |
| 1.4487 | 2800 | 0.4189 | - |
| 1.5005 | 2900 | 0.4183 | - |
| 1.5522 | 3000 | 0.4143 | - |
| 1.6040 | 3100 | 0.4147 | - |
| 1.6479 | 3185 | - | 0.8748 |
| 1.6557 | 3200 | 0.413 | - |
| 1.7075 | 3300 | 0.4107 | - |
| 1.7592 | 3400 | 0.4114 | - |
| 1.8110 | 3500 | 0.4111 | - |
| 1.8627 | 3600 | 0.4073 | - |
| 1.9145 | 3700 | 0.4093 | - |
| 1.9662 | 3800 | 0.4057 | - |
| 1.9776 | 3822 | - | 0.8766 |
| 2.0176 | 3900 | 0.3993 | - |
| 2.0693 | 4000 | 0.3996 | - |
| 2.1211 | 4100 | 0.3987 | - |
| 2.1729 | 4200 | 0.4012 | - |
| 2.2246 | 4300 | 0.3979 | - |
| 2.2764 | 4400 | 0.3977 | - |
| 2.3069 | 4459 | - | 0.8774 |
| 2.3281 | 4500 | 0.3981 | - |
| 2.3799 | 4600 | 0.394 | - |
| 2.4316 | 4700 | 0.3946 | - |
| 2.4834 | 4800 | 0.395 | - |
| 2.5351 | 4900 | 0.3971 | - |
| 2.5869 | 5000 | 0.3963 | - |
| 2.6366 | 5096 | - | 0.8776 |
| 2.6386 | 5100 | 0.396 | - |
| 2.6904 | 5200 | 0.3976 | - |
| 2.7421 | 5300 | 0.3963 | - |
| 2.7939 | 5400 | 0.3985 | - |
| 2.8456 | 5500 | 0.3968 | - |
| 2.8974 | 5600 | 0.3973 | - |
| 2.9492 | 5700 | 0.3981 | - |
| 2.9662 | 5733 | - | 0.8778 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 3
Evaluation results
- Cosine Accuracy@1 on foundational evalself-reported0.879
- Cosine Accuracy@3 on foundational evalself-reported0.925
- Cosine Accuracy@5 on foundational evalself-reported0.937
- Cosine Accuracy@10 on foundational evalself-reported0.947
- Cosine Precision@1 on foundational evalself-reported0.879
- Cosine Precision@3 on foundational evalself-reported0.452
- Cosine Precision@5 on foundational evalself-reported0.298
- Cosine Precision@10 on foundational evalself-reported0.161
- Cosine Recall@1 on foundational evalself-reported0.651
- Cosine Recall@3 on foundational evalself-reported0.834