SentenceTransformer
This is a sentence-transformers model trained on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("pankajrajdeo/BioForge-bioformer-16L-genotype-phenotype")
# Run inference
sentences = [
'alpha-L-Fucp-(1->2)-alpha-D-Galp-(1->3)-D-GlcpNAc',
'Fuc(a1-2)Gal(a1-3)GlcNAc',
'CHEBI',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
g2p_eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8699 |
cosine_accuracy@3 | 0.9226 |
cosine_accuracy@5 | 0.9421 |
cosine_accuracy@10 | 0.9632 |
cosine_precision@1 | 0.8699 |
cosine_precision@3 | 0.3504 |
cosine_precision@5 | 0.2177 |
cosine_precision@10 | 0.1123 |
cosine_recall@1 | 0.803 |
cosine_recall@3 | 0.9077 |
cosine_recall@5 | 0.9316 |
cosine_recall@10 | 0.9563 |
cosine_ndcg@10 | 0.9094 |
cosine_mrr@10 | 0.9007 |
cosine_map@100 | 0.8928 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 545,701 training samples
- Columns:
anchor
,positive
,source
, andpair_type
- Approximate statistics based on the first 1000 samples:
anchor positive source pair_type type string string string string details - min: 3 tokens
- mean: 11.82 tokens
- max: 229 tokens
- min: 3 tokens
- mean: 16.48 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 4.97 tokens
- max: 7 tokens
- min: 3 tokens
- mean: 3.06 tokens
- max: 9 tokens
- Samples:
anchor positive source pair_type breast cancer type 2 susceptibility protein sequence variant L1776* (human)
breast cancer type 2 susceptibility protein (human)
PR
hierarchy
Ovarian varices
Varices of ovary
SNOMED_CT
synonym
11-Deoxycortisol [Mass/volume] in Serum or Plasma --evening specimen
11-Deoxycortisol Evening specimen, Blood
LOINC
synonym
- Loss:
main.MultipleNegativesSymmetricMarginLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512gradient_accumulation_steps
: 4learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.05bf16
: Truedataloader_num_workers
: 16load_best_model_at_end
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 16dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | g2p_eval_cosine_ndcg@10 |
---|---|---|---|
0.3265 | 87 | - | 0.9054 |
0.3752 | 100 | 0.4177 | - |
0.6529 | 174 | - | 0.9055 |
0.7505 | 200 | 0.4129 | - |
0.9794 | 261 | - | 0.9062 |
1.1238 | 300 | 0.4061 | - |
1.3039 | 348 | - | 0.9066 |
1.4991 | 400 | 0.3917 | - |
1.6304 | 435 | - | 0.9065 |
1.8743 | 500 | 0.3939 | - |
1.9568 | 522 | - | 0.9079 |
2.2477 | 600 | 0.3826 | - |
2.2814 | 609 | - | 0.9079 |
2.6079 | 696 | - | 0.9083 |
2.6229 | 700 | 0.3739 | - |
2.9343 | 783 | - | 0.9090 |
2.9981 | 800 | 0.3805 | - |
3.2589 | 870 | - | 0.9090 |
3.3715 | 900 | 0.3685 | - |
3.5854 | 957 | - | 0.9092 |
3.7467 | 1000 | 0.3701 | - |
3.9118 | 1044 | - | 0.9094 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Evaluation results
- Cosine Accuracy@1 on g2p evalself-reported0.870
- Cosine Accuracy@3 on g2p evalself-reported0.923
- Cosine Accuracy@5 on g2p evalself-reported0.942
- Cosine Accuracy@10 on g2p evalself-reported0.963
- Cosine Precision@1 on g2p evalself-reported0.870
- Cosine Precision@3 on g2p evalself-reported0.350
- Cosine Precision@5 on g2p evalself-reported0.218
- Cosine Precision@10 on g2p evalself-reported0.112
- Cosine Recall@1 on g2p evalself-reported0.803
- Cosine Recall@3 on g2p evalself-reported0.908